1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <linux/types.h> 18#include <linux/ioctl.h> 19#include <asm/byteorder.h> 20 21/* 22 * User-space ABI bits: 23 */ 24 25/* 26 * attr.type 27 */ 28enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37}; 38 39/* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 56 PERF_COUNT_HW_MAX, /* non-ABI */ 57}; 58 59/* 60 * Generalized hardware cache events: 61 * 62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x 63 * { read, write, prefetch } x 64 * { accesses, misses } 65 */ 66enum perf_hw_cache_id { 67 PERF_COUNT_HW_CACHE_L1D = 0, 68 PERF_COUNT_HW_CACHE_L1I = 1, 69 PERF_COUNT_HW_CACHE_LL = 2, 70 PERF_COUNT_HW_CACHE_DTLB = 3, 71 PERF_COUNT_HW_CACHE_ITLB = 4, 72 PERF_COUNT_HW_CACHE_BPU = 5, 73 74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 75}; 76 77enum perf_hw_cache_op_id { 78 PERF_COUNT_HW_CACHE_OP_READ = 0, 79 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 81 82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 83}; 84 85enum perf_hw_cache_op_result_id { 86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 88 89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 90}; 91 92/* 93 * Special "software" events provided by the kernel, even if the hardware 94 * does not support performance events. These events measure various 95 * physical and sw events of the kernel (and allow the profiling of them as 96 * well): 97 */ 98enum perf_sw_ids { 99 PERF_COUNT_SW_CPU_CLOCK = 0, 100 PERF_COUNT_SW_TASK_CLOCK = 1, 101 PERF_COUNT_SW_PAGE_FAULTS = 2, 102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 103 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 107 PERF_COUNT_SW_EMULATION_FAULTS = 8, 108 109 PERF_COUNT_SW_MAX, /* non-ABI */ 110}; 111 112/* 113 * Bits that can be set in attr.sample_type to request information 114 * in the overflow packets. 115 */ 116enum perf_event_sample_format { 117 PERF_SAMPLE_IP = 1U << 0, 118 PERF_SAMPLE_TID = 1U << 1, 119 PERF_SAMPLE_TIME = 1U << 2, 120 PERF_SAMPLE_ADDR = 1U << 3, 121 PERF_SAMPLE_READ = 1U << 4, 122 PERF_SAMPLE_CALLCHAIN = 1U << 5, 123 PERF_SAMPLE_ID = 1U << 6, 124 PERF_SAMPLE_CPU = 1U << 7, 125 PERF_SAMPLE_PERIOD = 1U << 8, 126 PERF_SAMPLE_STREAM_ID = 1U << 9, 127 PERF_SAMPLE_RAW = 1U << 10, 128 129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */ 130}; 131 132/* 133 * The format of the data returned by read() on a perf event fd, 134 * as specified by attr.read_format: 135 * 136 * struct read_format { 137 * { u64 value; 138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 139 * { u64 time_running; } && PERF_FORMAT_RUNNING 140 * { u64 id; } && PERF_FORMAT_ID 141 * } && !PERF_FORMAT_GROUP 142 * 143 * { u64 nr; 144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED 145 * { u64 time_running; } && PERF_FORMAT_RUNNING 146 * { u64 value; 147 * { u64 id; } && PERF_FORMAT_ID 148 * } cntr[nr]; 149 * } && PERF_FORMAT_GROUP 150 * }; 151 */ 152enum perf_event_read_format { 153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 155 PERF_FORMAT_ID = 1U << 2, 156 PERF_FORMAT_GROUP = 1U << 3, 157 158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 159}; 160 161#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 162 163/* 164 * Hardware event_id to monitor via a performance monitoring event: 165 */ 166struct perf_event_attr { 167 168 /* 169 * Major type: hardware/software/tracepoint/etc. 170 */ 171 __u32 type; 172 173 /* 174 * Size of the attr structure, for fwd/bwd compat. 175 */ 176 __u32 size; 177 178 /* 179 * Type specific configuration information. 180 */ 181 __u64 config; 182 183 union { 184 __u64 sample_period; 185 __u64 sample_freq; 186 }; 187 188 __u64 sample_type; 189 __u64 read_format; 190 191 __u64 disabled : 1, /* off by default */ 192 inherit : 1, /* children inherit it */ 193 pinned : 1, /* must always be on PMU */ 194 exclusive : 1, /* only group on PMU */ 195 exclude_user : 1, /* don't count user */ 196 exclude_kernel : 1, /* ditto kernel */ 197 exclude_hv : 1, /* ditto hypervisor */ 198 exclude_idle : 1, /* don't count when idle */ 199 mmap : 1, /* include mmap data */ 200 comm : 1, /* include comm data */ 201 freq : 1, /* use freq, not period */ 202 inherit_stat : 1, /* per task counts */ 203 enable_on_exec : 1, /* next exec enables */ 204 task : 1, /* trace fork/exit */ 205 watermark : 1, /* wakeup_watermark */ 206 207 __reserved_1 : 49; 208 209 union { 210 __u32 wakeup_events; /* wakeup every n events */ 211 __u32 wakeup_watermark; /* bytes before wakeup */ 212 }; 213 214 __u32 __reserved_2; 215 216 __u64 bp_addr; 217 __u32 bp_type; 218 __u32 bp_len; 219}; 220 221/* 222 * Ioctls that can be done on a perf event fd: 223 */ 224#define PERF_EVENT_IOC_ENABLE _IO ('$', 0) 225#define PERF_EVENT_IOC_DISABLE _IO ('$', 1) 226#define PERF_EVENT_IOC_REFRESH _IO ('$', 2) 227#define PERF_EVENT_IOC_RESET _IO ('$', 3) 228#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 229#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5) 230#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 231 232enum perf_event_ioc_flags { 233 PERF_IOC_FLAG_GROUP = 1U << 0, 234}; 235 236/* 237 * Structure of the page that can be mapped via mmap 238 */ 239struct perf_event_mmap_page { 240 __u32 version; /* version number of this structure */ 241 __u32 compat_version; /* lowest version this is compat with */ 242 243 /* 244 * Bits needed to read the hw events in user-space. 245 * 246 * u32 seq; 247 * s64 count; 248 * 249 * do { 250 * seq = pc->lock; 251 * 252 * barrier() 253 * if (pc->index) { 254 * count = pmc_read(pc->index - 1); 255 * count += pc->offset; 256 * } else 257 * goto regular_read; 258 * 259 * barrier(); 260 * } while (pc->lock != seq); 261 * 262 * NOTE: for obvious reason this only works on self-monitoring 263 * processes. 264 */ 265 __u32 lock; /* seqlock for synchronization */ 266 __u32 index; /* hardware event identifier */ 267 __s64 offset; /* add to hardware event value */ 268 __u64 time_enabled; /* time event active */ 269 __u64 time_running; /* time event on cpu */ 270 271 /* 272 * Hole for extension of the self monitor capabilities 273 */ 274 275 __u64 __reserved[123]; /* align to 1k */ 276 277 /* 278 * Control data for the mmap() data buffer. 279 * 280 * User-space reading the @data_head value should issue an rmb(), on 281 * SMP capable platforms, after reading this value -- see 282 * perf_event_wakeup(). 283 * 284 * When the mapping is PROT_WRITE the @data_tail value should be 285 * written by userspace to reflect the last read data. In this case 286 * the kernel will not over-write unread data. 287 */ 288 __u64 data_head; /* head in the data section */ 289 __u64 data_tail; /* user-space written tail */ 290}; 291 292#define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0) 293#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 294#define PERF_RECORD_MISC_KERNEL (1 << 0) 295#define PERF_RECORD_MISC_USER (2 << 0) 296#define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 297 298struct perf_event_header { 299 __u32 type; 300 __u16 misc; 301 __u16 size; 302}; 303 304enum perf_event_type { 305 306 /* 307 * The MMAP events record the PROT_EXEC mappings so that we can 308 * correlate userspace IPs to code. They have the following structure: 309 * 310 * struct { 311 * struct perf_event_header header; 312 * 313 * u32 pid, tid; 314 * u64 addr; 315 * u64 len; 316 * u64 pgoff; 317 * char filename[]; 318 * }; 319 */ 320 PERF_RECORD_MMAP = 1, 321 322 /* 323 * struct { 324 * struct perf_event_header header; 325 * u64 id; 326 * u64 lost; 327 * }; 328 */ 329 PERF_RECORD_LOST = 2, 330 331 /* 332 * struct { 333 * struct perf_event_header header; 334 * 335 * u32 pid, tid; 336 * char comm[]; 337 * }; 338 */ 339 PERF_RECORD_COMM = 3, 340 341 /* 342 * struct { 343 * struct perf_event_header header; 344 * u32 pid, ppid; 345 * u32 tid, ptid; 346 * u64 time; 347 * }; 348 */ 349 PERF_RECORD_EXIT = 4, 350 351 /* 352 * struct { 353 * struct perf_event_header header; 354 * u64 time; 355 * u64 id; 356 * u64 stream_id; 357 * }; 358 */ 359 PERF_RECORD_THROTTLE = 5, 360 PERF_RECORD_UNTHROTTLE = 6, 361 362 /* 363 * struct { 364 * struct perf_event_header header; 365 * u32 pid, ppid; 366 * u32 tid, ptid; 367 * u64 time; 368 * }; 369 */ 370 PERF_RECORD_FORK = 7, 371 372 /* 373 * struct { 374 * struct perf_event_header header; 375 * u32 pid, tid; 376 * 377 * struct read_format values; 378 * }; 379 */ 380 PERF_RECORD_READ = 8, 381 382 /* 383 * struct { 384 * struct perf_event_header header; 385 * 386 * { u64 ip; } && PERF_SAMPLE_IP 387 * { u32 pid, tid; } && PERF_SAMPLE_TID 388 * { u64 time; } && PERF_SAMPLE_TIME 389 * { u64 addr; } && PERF_SAMPLE_ADDR 390 * { u64 id; } && PERF_SAMPLE_ID 391 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 392 * { u32 cpu, res; } && PERF_SAMPLE_CPU 393 * { u64 period; } && PERF_SAMPLE_PERIOD 394 * 395 * { struct read_format values; } && PERF_SAMPLE_READ 396 * 397 * { u64 nr, 398 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 399 * 400 * # 401 * # The RAW record below is opaque data wrt the ABI 402 * # 403 * # That is, the ABI doesn't make any promises wrt to 404 * # the stability of its content, it may vary depending 405 * # on event, hardware, kernel version and phase of 406 * # the moon. 407 * # 408 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 409 * # 410 * 411 * { u32 size; 412 * char data[size];}&& PERF_SAMPLE_RAW 413 * }; 414 */ 415 PERF_RECORD_SAMPLE = 9, 416 417 PERF_RECORD_MAX, /* non-ABI */ 418}; 419 420enum perf_callchain_context { 421 PERF_CONTEXT_HV = (__u64)-32, 422 PERF_CONTEXT_KERNEL = (__u64)-128, 423 PERF_CONTEXT_USER = (__u64)-512, 424 425 PERF_CONTEXT_GUEST = (__u64)-2048, 426 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 427 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 428 429 PERF_CONTEXT_MAX = (__u64)-4095, 430}; 431 432#define PERF_FLAG_FD_NO_GROUP (1U << 0) 433#define PERF_FLAG_FD_OUTPUT (1U << 1) 434 435#ifdef __KERNEL__ 436/* 437 * Kernel-internal data types and definitions: 438 */ 439 440#ifdef CONFIG_PERF_EVENTS 441# include <asm/perf_event.h> 442#endif 443 444#ifdef CONFIG_HAVE_HW_BREAKPOINT 445#include <asm/hw_breakpoint.h> 446#endif 447 448#include <linux/list.h> 449#include <linux/mutex.h> 450#include <linux/rculist.h> 451#include <linux/rcupdate.h> 452#include <linux/spinlock.h> 453#include <linux/hrtimer.h> 454#include <linux/fs.h> 455#include <linux/pid_namespace.h> 456#include <linux/workqueue.h> 457#include <asm/atomic.h> 458 459#define PERF_MAX_STACK_DEPTH 255 460 461struct perf_callchain_entry { 462 __u64 nr; 463 __u64 ip[PERF_MAX_STACK_DEPTH]; 464}; 465 466struct perf_raw_record { 467 u32 size; 468 void *data; 469}; 470 471struct task_struct; 472 473/** 474 * struct hw_perf_event - performance event hardware details: 475 */ 476struct hw_perf_event { 477#ifdef CONFIG_PERF_EVENTS 478 union { 479 struct { /* hardware */ 480 u64 config; 481 unsigned long config_base; 482 unsigned long event_base; 483 int idx; 484 }; 485 struct { /* software */ 486 s64 remaining; 487 struct hrtimer hrtimer; 488 }; 489#ifdef CONFIG_HAVE_HW_BREAKPOINT 490 union { /* breakpoint */ 491 struct arch_hw_breakpoint info; 492 }; 493#endif 494 }; 495 atomic64_t prev_count; 496 u64 sample_period; 497 u64 last_period; 498 atomic64_t period_left; 499 u64 interrupts; 500 501 u64 freq_count; 502 u64 freq_interrupts; 503 u64 freq_stamp; 504#endif 505}; 506 507struct perf_event; 508 509/** 510 * struct pmu - generic performance monitoring unit 511 */ 512struct pmu { 513 int (*enable) (struct perf_event *event); 514 void (*disable) (struct perf_event *event); 515 void (*read) (struct perf_event *event); 516 void (*unthrottle) (struct perf_event *event); 517}; 518 519/** 520 * enum perf_event_active_state - the states of a event 521 */ 522enum perf_event_active_state { 523 PERF_EVENT_STATE_ERROR = -2, 524 PERF_EVENT_STATE_OFF = -1, 525 PERF_EVENT_STATE_INACTIVE = 0, 526 PERF_EVENT_STATE_ACTIVE = 1, 527}; 528 529struct file; 530 531struct perf_mmap_data { 532 struct rcu_head rcu_head; 533#ifdef CONFIG_PERF_USE_VMALLOC 534 struct work_struct work; 535#endif 536 int data_order; 537 int nr_pages; /* nr of data pages */ 538 int writable; /* are we writable */ 539 int nr_locked; /* nr pages mlocked */ 540 541 atomic_t poll; /* POLL_ for wakeups */ 542 atomic_t events; /* event_id limit */ 543 544 atomic_long_t head; /* write position */ 545 atomic_long_t done_head; /* completed head */ 546 547 atomic_t lock; /* concurrent writes */ 548 atomic_t wakeup; /* needs a wakeup */ 549 atomic_t lost; /* nr records lost */ 550 551 long watermark; /* wakeup watermark */ 552 553 struct perf_event_mmap_page *user_page; 554 void *data_pages[0]; 555}; 556 557struct perf_pending_entry { 558 struct perf_pending_entry *next; 559 void (*func)(struct perf_pending_entry *); 560}; 561 562struct perf_sample_data; 563 564typedef void (*perf_overflow_handler_t)(struct perf_event *, int, 565 struct perf_sample_data *, 566 struct pt_regs *regs); 567 568/** 569 * struct perf_event - performance event kernel representation: 570 */ 571struct perf_event { 572#ifdef CONFIG_PERF_EVENTS 573 struct list_head group_entry; 574 struct list_head event_entry; 575 struct list_head sibling_list; 576 int nr_siblings; 577 struct perf_event *group_leader; 578 struct perf_event *output; 579 const struct pmu *pmu; 580 581 enum perf_event_active_state state; 582 atomic64_t count; 583 584 /* 585 * These are the total time in nanoseconds that the event 586 * has been enabled (i.e. eligible to run, and the task has 587 * been scheduled in, if this is a per-task event) 588 * and running (scheduled onto the CPU), respectively. 589 * 590 * They are computed from tstamp_enabled, tstamp_running and 591 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 592 */ 593 u64 total_time_enabled; 594 u64 total_time_running; 595 596 /* 597 * These are timestamps used for computing total_time_enabled 598 * and total_time_running when the event is in INACTIVE or 599 * ACTIVE state, measured in nanoseconds from an arbitrary point 600 * in time. 601 * tstamp_enabled: the notional time when the event was enabled 602 * tstamp_running: the notional time when the event was scheduled on 603 * tstamp_stopped: in INACTIVE state, the notional time when the 604 * event was scheduled off. 605 */ 606 u64 tstamp_enabled; 607 u64 tstamp_running; 608 u64 tstamp_stopped; 609 610 struct perf_event_attr attr; 611 struct hw_perf_event hw; 612 613 struct perf_event_context *ctx; 614 struct file *filp; 615 616 /* 617 * These accumulate total time (in nanoseconds) that children 618 * events have been enabled and running, respectively. 619 */ 620 atomic64_t child_total_time_enabled; 621 atomic64_t child_total_time_running; 622 623 /* 624 * Protect attach/detach and child_list: 625 */ 626 struct mutex child_mutex; 627 struct list_head child_list; 628 struct perf_event *parent; 629 630 int oncpu; 631 int cpu; 632 633 struct list_head owner_entry; 634 struct task_struct *owner; 635 636 /* mmap bits */ 637 struct mutex mmap_mutex; 638 atomic_t mmap_count; 639 struct perf_mmap_data *data; 640 641 /* poll related */ 642 wait_queue_head_t waitq; 643 struct fasync_struct *fasync; 644 645 /* delayed work for NMIs and such */ 646 int pending_wakeup; 647 int pending_kill; 648 int pending_disable; 649 struct perf_pending_entry pending; 650 651 atomic_t event_limit; 652 653 void (*destroy)(struct perf_event *); 654 struct rcu_head rcu_head; 655 656 struct pid_namespace *ns; 657 u64 id; 658 659 perf_overflow_handler_t overflow_handler; 660 661#ifdef CONFIG_EVENT_PROFILE 662 struct event_filter *filter; 663#endif 664 665#endif /* CONFIG_PERF_EVENTS */ 666}; 667 668/** 669 * struct perf_event_context - event context structure 670 * 671 * Used as a container for task events and CPU events as well: 672 */ 673struct perf_event_context { 674 /* 675 * Protect the states of the events in the list, 676 * nr_active, and the list: 677 */ 678 raw_spinlock_t lock; 679 /* 680 * Protect the list of events. Locking either mutex or lock 681 * is sufficient to ensure the list doesn't change; to change 682 * the list you need to lock both the mutex and the spinlock. 683 */ 684 struct mutex mutex; 685 686 struct list_head group_list; 687 struct list_head event_list; 688 int nr_events; 689 int nr_active; 690 int is_active; 691 int nr_stat; 692 atomic_t refcount; 693 struct task_struct *task; 694 695 /* 696 * Context clock, runs when context enabled. 697 */ 698 u64 time; 699 u64 timestamp; 700 701 /* 702 * These fields let us detect when two contexts have both 703 * been cloned (inherited) from a common ancestor. 704 */ 705 struct perf_event_context *parent_ctx; 706 u64 parent_gen; 707 u64 generation; 708 int pin_count; 709 struct rcu_head rcu_head; 710}; 711 712/** 713 * struct perf_event_cpu_context - per cpu event context structure 714 */ 715struct perf_cpu_context { 716 struct perf_event_context ctx; 717 struct perf_event_context *task_ctx; 718 int active_oncpu; 719 int max_pertask; 720 int exclusive; 721 722 /* 723 * Recursion avoidance: 724 * 725 * task, softirq, irq, nmi context 726 */ 727 int recursion[4]; 728}; 729 730struct perf_output_handle { 731 struct perf_event *event; 732 struct perf_mmap_data *data; 733 unsigned long head; 734 unsigned long offset; 735 int nmi; 736 int sample; 737 int locked; 738}; 739 740#ifdef CONFIG_PERF_EVENTS 741 742/* 743 * Set by architecture code: 744 */ 745extern int perf_max_events; 746 747extern const struct pmu *hw_perf_event_init(struct perf_event *event); 748 749extern void perf_event_task_sched_in(struct task_struct *task, int cpu); 750extern void perf_event_task_sched_out(struct task_struct *task, 751 struct task_struct *next, int cpu); 752extern void perf_event_task_tick(struct task_struct *task, int cpu); 753extern int perf_event_init_task(struct task_struct *child); 754extern void perf_event_exit_task(struct task_struct *child); 755extern void perf_event_free_task(struct task_struct *task); 756extern void set_perf_event_pending(void); 757extern void perf_event_do_pending(void); 758extern void perf_event_print_debug(void); 759extern void __perf_disable(void); 760extern bool __perf_enable(void); 761extern void perf_disable(void); 762extern void perf_enable(void); 763extern int perf_event_task_disable(void); 764extern int perf_event_task_enable(void); 765extern int hw_perf_group_sched_in(struct perf_event *group_leader, 766 struct perf_cpu_context *cpuctx, 767 struct perf_event_context *ctx, int cpu); 768extern void perf_event_update_userpage(struct perf_event *event); 769extern int perf_event_release_kernel(struct perf_event *event); 770extern struct perf_event * 771perf_event_create_kernel_counter(struct perf_event_attr *attr, 772 int cpu, 773 pid_t pid, 774 perf_overflow_handler_t callback); 775extern u64 perf_event_read_value(struct perf_event *event, 776 u64 *enabled, u64 *running); 777 778struct perf_sample_data { 779 u64 type; 780 781 u64 ip; 782 struct { 783 u32 pid; 784 u32 tid; 785 } tid_entry; 786 u64 time; 787 u64 addr; 788 u64 id; 789 u64 stream_id; 790 struct { 791 u32 cpu; 792 u32 reserved; 793 } cpu_entry; 794 u64 period; 795 struct perf_callchain_entry *callchain; 796 struct perf_raw_record *raw; 797}; 798 799extern void perf_output_sample(struct perf_output_handle *handle, 800 struct perf_event_header *header, 801 struct perf_sample_data *data, 802 struct perf_event *event); 803extern void perf_prepare_sample(struct perf_event_header *header, 804 struct perf_sample_data *data, 805 struct perf_event *event, 806 struct pt_regs *regs); 807 808extern int perf_event_overflow(struct perf_event *event, int nmi, 809 struct perf_sample_data *data, 810 struct pt_regs *regs); 811 812/* 813 * Return 1 for a software event, 0 for a hardware event 814 */ 815static inline int is_software_event(struct perf_event *event) 816{ 817 switch (event->attr.type) { 818 case PERF_TYPE_SOFTWARE: 819 case PERF_TYPE_TRACEPOINT: 820 /* for now the breakpoint stuff also works as software event */ 821 case PERF_TYPE_BREAKPOINT: 822 return 1; 823 } 824 return 0; 825} 826 827extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; 828 829extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64); 830 831static inline void 832perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr) 833{ 834 if (atomic_read(&perf_swevent_enabled[event_id])) 835 __perf_sw_event(event_id, nr, nmi, regs, addr); 836} 837 838extern void __perf_event_mmap(struct vm_area_struct *vma); 839 840static inline void perf_event_mmap(struct vm_area_struct *vma) 841{ 842 if (vma->vm_flags & VM_EXEC) 843 __perf_event_mmap(vma); 844} 845 846extern void perf_event_comm(struct task_struct *tsk); 847extern void perf_event_fork(struct task_struct *tsk); 848 849extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs); 850 851extern int sysctl_perf_event_paranoid; 852extern int sysctl_perf_event_mlock; 853extern int sysctl_perf_event_sample_rate; 854 855extern void perf_event_init(void); 856extern void perf_tp_event(int event_id, u64 addr, u64 count, 857 void *record, int entry_size); 858extern void perf_bp_event(struct perf_event *event, void *data); 859 860#ifndef perf_misc_flags 861#define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \ 862 PERF_RECORD_MISC_KERNEL) 863#define perf_instruction_pointer(regs) instruction_pointer(regs) 864#endif 865 866extern int perf_output_begin(struct perf_output_handle *handle, 867 struct perf_event *event, unsigned int size, 868 int nmi, int sample); 869extern void perf_output_end(struct perf_output_handle *handle); 870extern void perf_output_copy(struct perf_output_handle *handle, 871 const void *buf, unsigned int len); 872extern int perf_swevent_get_recursion_context(void); 873extern void perf_swevent_put_recursion_context(int rctx); 874extern void perf_event_enable(struct perf_event *event); 875extern void perf_event_disable(struct perf_event *event); 876#else 877static inline void 878perf_event_task_sched_in(struct task_struct *task, int cpu) { } 879static inline void 880perf_event_task_sched_out(struct task_struct *task, 881 struct task_struct *next, int cpu) { } 882static inline void 883perf_event_task_tick(struct task_struct *task, int cpu) { } 884static inline int perf_event_init_task(struct task_struct *child) { return 0; } 885static inline void perf_event_exit_task(struct task_struct *child) { } 886static inline void perf_event_free_task(struct task_struct *task) { } 887static inline void perf_event_do_pending(void) { } 888static inline void perf_event_print_debug(void) { } 889static inline void perf_disable(void) { } 890static inline void perf_enable(void) { } 891static inline int perf_event_task_disable(void) { return -EINVAL; } 892static inline int perf_event_task_enable(void) { return -EINVAL; } 893 894static inline void 895perf_sw_event(u32 event_id, u64 nr, int nmi, 896 struct pt_regs *regs, u64 addr) { } 897static inline void 898perf_bp_event(struct perf_event *event, void *data) { } 899 900static inline void perf_event_mmap(struct vm_area_struct *vma) { } 901static inline void perf_event_comm(struct task_struct *tsk) { } 902static inline void perf_event_fork(struct task_struct *tsk) { } 903static inline void perf_event_init(void) { } 904static inline int perf_swevent_get_recursion_context(void) { return -1; } 905static inline void perf_swevent_put_recursion_context(int rctx) { } 906static inline void perf_event_enable(struct perf_event *event) { } 907static inline void perf_event_disable(struct perf_event *event) { } 908#endif 909 910#define perf_output_put(handle, x) \ 911 perf_output_copy((handle), &(x), sizeof(x)) 912 913#endif /* __KERNEL__ */ 914#endif /* _LINUX_PERF_EVENT_H */