at 1810b6cb162e0c19e0ecbbacbcfd66f578f335ec 1556 lines 42 kB view raw
1/* 2 * linux/kernel/timer.c 3 * 4 * Kernel internal timers, kernel timekeeping, basic process system calls 5 * 6 * Copyright (C) 1991, 1992 Linus Torvalds 7 * 8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. 9 * 10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to 13 * serialize accesses to xtime/lost_ticks). 14 * Copyright (C) 1998 Andrea Arcangeli 15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl 16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love 17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling. 18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar 19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar 20 */ 21 22#include <linux/kernel_stat.h> 23#include <linux/module.h> 24#include <linux/interrupt.h> 25#include <linux/percpu.h> 26#include <linux/init.h> 27#include <linux/mm.h> 28#include <linux/swap.h> 29#include <linux/notifier.h> 30#include <linux/thread_info.h> 31#include <linux/time.h> 32#include <linux/jiffies.h> 33#include <linux/posix-timers.h> 34#include <linux/cpu.h> 35#include <linux/syscalls.h> 36#include <linux/delay.h> 37 38#include <asm/uaccess.h> 39#include <asm/unistd.h> 40#include <asm/div64.h> 41#include <asm/timex.h> 42#include <asm/io.h> 43 44#ifdef CONFIG_TIME_INTERPOLATION 45static void time_interpolator_update(long delta_nsec); 46#else 47#define time_interpolator_update(x) 48#endif 49 50u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 51 52EXPORT_SYMBOL(jiffies_64); 53 54/* 55 * per-CPU timer vector definitions: 56 */ 57#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) 58#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) 59#define TVN_SIZE (1 << TVN_BITS) 60#define TVR_SIZE (1 << TVR_BITS) 61#define TVN_MASK (TVN_SIZE - 1) 62#define TVR_MASK (TVR_SIZE - 1) 63 64typedef struct tvec_s { 65 struct list_head vec[TVN_SIZE]; 66} tvec_t; 67 68typedef struct tvec_root_s { 69 struct list_head vec[TVR_SIZE]; 70} tvec_root_t; 71 72struct tvec_t_base_s { 73 spinlock_t lock; 74 struct timer_list *running_timer; 75 unsigned long timer_jiffies; 76 tvec_root_t tv1; 77 tvec_t tv2; 78 tvec_t tv3; 79 tvec_t tv4; 80 tvec_t tv5; 81} ____cacheline_aligned_in_smp; 82 83typedef struct tvec_t_base_s tvec_base_t; 84static DEFINE_PER_CPU(tvec_base_t *, tvec_bases); 85tvec_base_t boot_tvec_bases; 86EXPORT_SYMBOL(boot_tvec_bases); 87 88static inline void set_running_timer(tvec_base_t *base, 89 struct timer_list *timer) 90{ 91#ifdef CONFIG_SMP 92 base->running_timer = timer; 93#endif 94} 95 96static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) 97{ 98 unsigned long expires = timer->expires; 99 unsigned long idx = expires - base->timer_jiffies; 100 struct list_head *vec; 101 102 if (idx < TVR_SIZE) { 103 int i = expires & TVR_MASK; 104 vec = base->tv1.vec + i; 105 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { 106 int i = (expires >> TVR_BITS) & TVN_MASK; 107 vec = base->tv2.vec + i; 108 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { 109 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; 110 vec = base->tv3.vec + i; 111 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { 112 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; 113 vec = base->tv4.vec + i; 114 } else if ((signed long) idx < 0) { 115 /* 116 * Can happen if you add a timer with expires == jiffies, 117 * or you set a timer to go off in the past 118 */ 119 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); 120 } else { 121 int i; 122 /* If the timeout is larger than 0xffffffff on 64-bit 123 * architectures then we use the maximum timeout: 124 */ 125 if (idx > 0xffffffffUL) { 126 idx = 0xffffffffUL; 127 expires = idx + base->timer_jiffies; 128 } 129 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; 130 vec = base->tv5.vec + i; 131 } 132 /* 133 * Timers are FIFO: 134 */ 135 list_add_tail(&timer->entry, vec); 136} 137 138/*** 139 * init_timer - initialize a timer. 140 * @timer: the timer to be initialized 141 * 142 * init_timer() must be done to a timer prior calling *any* of the 143 * other timer functions. 144 */ 145void fastcall init_timer(struct timer_list *timer) 146{ 147 timer->entry.next = NULL; 148 timer->base = per_cpu(tvec_bases, raw_smp_processor_id()); 149} 150EXPORT_SYMBOL(init_timer); 151 152static inline void detach_timer(struct timer_list *timer, 153 int clear_pending) 154{ 155 struct list_head *entry = &timer->entry; 156 157 __list_del(entry->prev, entry->next); 158 if (clear_pending) 159 entry->next = NULL; 160 entry->prev = LIST_POISON2; 161} 162 163/* 164 * We are using hashed locking: holding per_cpu(tvec_bases).lock 165 * means that all timers which are tied to this base via timer->base are 166 * locked, and the base itself is locked too. 167 * 168 * So __run_timers/migrate_timers can safely modify all timers which could 169 * be found on ->tvX lists. 170 * 171 * When the timer's base is locked, and the timer removed from list, it is 172 * possible to set timer->base = NULL and drop the lock: the timer remains 173 * locked. 174 */ 175static tvec_base_t *lock_timer_base(struct timer_list *timer, 176 unsigned long *flags) 177{ 178 tvec_base_t *base; 179 180 for (;;) { 181 base = timer->base; 182 if (likely(base != NULL)) { 183 spin_lock_irqsave(&base->lock, *flags); 184 if (likely(base == timer->base)) 185 return base; 186 /* The timer has migrated to another CPU */ 187 spin_unlock_irqrestore(&base->lock, *flags); 188 } 189 cpu_relax(); 190 } 191} 192 193int __mod_timer(struct timer_list *timer, unsigned long expires) 194{ 195 tvec_base_t *base, *new_base; 196 unsigned long flags; 197 int ret = 0; 198 199 BUG_ON(!timer->function); 200 201 base = lock_timer_base(timer, &flags); 202 203 if (timer_pending(timer)) { 204 detach_timer(timer, 0); 205 ret = 1; 206 } 207 208 new_base = __get_cpu_var(tvec_bases); 209 210 if (base != new_base) { 211 /* 212 * We are trying to schedule the timer on the local CPU. 213 * However we can't change timer's base while it is running, 214 * otherwise del_timer_sync() can't detect that the timer's 215 * handler yet has not finished. This also guarantees that 216 * the timer is serialized wrt itself. 217 */ 218 if (likely(base->running_timer != timer)) { 219 /* See the comment in lock_timer_base() */ 220 timer->base = NULL; 221 spin_unlock(&base->lock); 222 base = new_base; 223 spin_lock(&base->lock); 224 timer->base = base; 225 } 226 } 227 228 timer->expires = expires; 229 internal_add_timer(base, timer); 230 spin_unlock_irqrestore(&base->lock, flags); 231 232 return ret; 233} 234 235EXPORT_SYMBOL(__mod_timer); 236 237/*** 238 * add_timer_on - start a timer on a particular CPU 239 * @timer: the timer to be added 240 * @cpu: the CPU to start it on 241 * 242 * This is not very scalable on SMP. Double adds are not possible. 243 */ 244void add_timer_on(struct timer_list *timer, int cpu) 245{ 246 tvec_base_t *base = per_cpu(tvec_bases, cpu); 247 unsigned long flags; 248 249 BUG_ON(timer_pending(timer) || !timer->function); 250 spin_lock_irqsave(&base->lock, flags); 251 timer->base = base; 252 internal_add_timer(base, timer); 253 spin_unlock_irqrestore(&base->lock, flags); 254} 255 256 257/*** 258 * mod_timer - modify a timer's timeout 259 * @timer: the timer to be modified 260 * 261 * mod_timer is a more efficient way to update the expire field of an 262 * active timer (if the timer is inactive it will be activated) 263 * 264 * mod_timer(timer, expires) is equivalent to: 265 * 266 * del_timer(timer); timer->expires = expires; add_timer(timer); 267 * 268 * Note that if there are multiple unserialized concurrent users of the 269 * same timer, then mod_timer() is the only safe way to modify the timeout, 270 * since add_timer() cannot modify an already running timer. 271 * 272 * The function returns whether it has modified a pending timer or not. 273 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an 274 * active timer returns 1.) 275 */ 276int mod_timer(struct timer_list *timer, unsigned long expires) 277{ 278 BUG_ON(!timer->function); 279 280 /* 281 * This is a common optimization triggered by the 282 * networking code - if the timer is re-modified 283 * to be the same thing then just return: 284 */ 285 if (timer->expires == expires && timer_pending(timer)) 286 return 1; 287 288 return __mod_timer(timer, expires); 289} 290 291EXPORT_SYMBOL(mod_timer); 292 293/*** 294 * del_timer - deactive a timer. 295 * @timer: the timer to be deactivated 296 * 297 * del_timer() deactivates a timer - this works on both active and inactive 298 * timers. 299 * 300 * The function returns whether it has deactivated a pending timer or not. 301 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an 302 * active timer returns 1.) 303 */ 304int del_timer(struct timer_list *timer) 305{ 306 tvec_base_t *base; 307 unsigned long flags; 308 int ret = 0; 309 310 if (timer_pending(timer)) { 311 base = lock_timer_base(timer, &flags); 312 if (timer_pending(timer)) { 313 detach_timer(timer, 1); 314 ret = 1; 315 } 316 spin_unlock_irqrestore(&base->lock, flags); 317 } 318 319 return ret; 320} 321 322EXPORT_SYMBOL(del_timer); 323 324#ifdef CONFIG_SMP 325/* 326 * This function tries to deactivate a timer. Upon successful (ret >= 0) 327 * exit the timer is not queued and the handler is not running on any CPU. 328 * 329 * It must not be called from interrupt contexts. 330 */ 331int try_to_del_timer_sync(struct timer_list *timer) 332{ 333 tvec_base_t *base; 334 unsigned long flags; 335 int ret = -1; 336 337 base = lock_timer_base(timer, &flags); 338 339 if (base->running_timer == timer) 340 goto out; 341 342 ret = 0; 343 if (timer_pending(timer)) { 344 detach_timer(timer, 1); 345 ret = 1; 346 } 347out: 348 spin_unlock_irqrestore(&base->lock, flags); 349 350 return ret; 351} 352 353/*** 354 * del_timer_sync - deactivate a timer and wait for the handler to finish. 355 * @timer: the timer to be deactivated 356 * 357 * This function only differs from del_timer() on SMP: besides deactivating 358 * the timer it also makes sure the handler has finished executing on other 359 * CPUs. 360 * 361 * Synchronization rules: callers must prevent restarting of the timer, 362 * otherwise this function is meaningless. It must not be called from 363 * interrupt contexts. The caller must not hold locks which would prevent 364 * completion of the timer's handler. The timer's handler must not call 365 * add_timer_on(). Upon exit the timer is not queued and the handler is 366 * not running on any CPU. 367 * 368 * The function returns whether it has deactivated a pending timer or not. 369 */ 370int del_timer_sync(struct timer_list *timer) 371{ 372 for (;;) { 373 int ret = try_to_del_timer_sync(timer); 374 if (ret >= 0) 375 return ret; 376 } 377} 378 379EXPORT_SYMBOL(del_timer_sync); 380#endif 381 382static int cascade(tvec_base_t *base, tvec_t *tv, int index) 383{ 384 /* cascade all the timers from tv up one level */ 385 struct list_head *head, *curr; 386 387 head = tv->vec + index; 388 curr = head->next; 389 /* 390 * We are removing _all_ timers from the list, so we don't have to 391 * detach them individually, just clear the list afterwards. 392 */ 393 while (curr != head) { 394 struct timer_list *tmp; 395 396 tmp = list_entry(curr, struct timer_list, entry); 397 BUG_ON(tmp->base != base); 398 curr = curr->next; 399 internal_add_timer(base, tmp); 400 } 401 INIT_LIST_HEAD(head); 402 403 return index; 404} 405 406/*** 407 * __run_timers - run all expired timers (if any) on this CPU. 408 * @base: the timer vector to be processed. 409 * 410 * This function cascades all vectors and executes all expired timer 411 * vectors. 412 */ 413#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK 414 415static inline void __run_timers(tvec_base_t *base) 416{ 417 struct timer_list *timer; 418 419 spin_lock_irq(&base->lock); 420 while (time_after_eq(jiffies, base->timer_jiffies)) { 421 struct list_head work_list = LIST_HEAD_INIT(work_list); 422 struct list_head *head = &work_list; 423 int index = base->timer_jiffies & TVR_MASK; 424 425 /* 426 * Cascade timers: 427 */ 428 if (!index && 429 (!cascade(base, &base->tv2, INDEX(0))) && 430 (!cascade(base, &base->tv3, INDEX(1))) && 431 !cascade(base, &base->tv4, INDEX(2))) 432 cascade(base, &base->tv5, INDEX(3)); 433 ++base->timer_jiffies; 434 list_splice_init(base->tv1.vec + index, &work_list); 435 while (!list_empty(head)) { 436 void (*fn)(unsigned long); 437 unsigned long data; 438 439 timer = list_entry(head->next,struct timer_list,entry); 440 fn = timer->function; 441 data = timer->data; 442 443 set_running_timer(base, timer); 444 detach_timer(timer, 1); 445 spin_unlock_irq(&base->lock); 446 { 447 int preempt_count = preempt_count(); 448 fn(data); 449 if (preempt_count != preempt_count()) { 450 printk(KERN_WARNING "huh, entered %p " 451 "with preempt_count %08x, exited" 452 " with %08x?\n", 453 fn, preempt_count, 454 preempt_count()); 455 BUG(); 456 } 457 } 458 spin_lock_irq(&base->lock); 459 } 460 } 461 set_running_timer(base, NULL); 462 spin_unlock_irq(&base->lock); 463} 464 465#ifdef CONFIG_NO_IDLE_HZ 466/* 467 * Find out when the next timer event is due to happen. This 468 * is used on S/390 to stop all activity when a cpus is idle. 469 * This functions needs to be called disabled. 470 */ 471unsigned long next_timer_interrupt(void) 472{ 473 tvec_base_t *base; 474 struct list_head *list; 475 struct timer_list *nte; 476 unsigned long expires; 477 unsigned long hr_expires = MAX_JIFFY_OFFSET; 478 ktime_t hr_delta; 479 tvec_t *varray[4]; 480 int i, j; 481 482 hr_delta = hrtimer_get_next_event(); 483 if (hr_delta.tv64 != KTIME_MAX) { 484 struct timespec tsdelta; 485 tsdelta = ktime_to_timespec(hr_delta); 486 hr_expires = timespec_to_jiffies(&tsdelta); 487 if (hr_expires < 3) 488 return hr_expires + jiffies; 489 } 490 hr_expires += jiffies; 491 492 base = __get_cpu_var(tvec_bases); 493 spin_lock(&base->lock); 494 expires = base->timer_jiffies + (LONG_MAX >> 1); 495 list = NULL; 496 497 /* Look for timer events in tv1. */ 498 j = base->timer_jiffies & TVR_MASK; 499 do { 500 list_for_each_entry(nte, base->tv1.vec + j, entry) { 501 expires = nte->expires; 502 if (j < (base->timer_jiffies & TVR_MASK)) 503 list = base->tv2.vec + (INDEX(0)); 504 goto found; 505 } 506 j = (j + 1) & TVR_MASK; 507 } while (j != (base->timer_jiffies & TVR_MASK)); 508 509 /* Check tv2-tv5. */ 510 varray[0] = &base->tv2; 511 varray[1] = &base->tv3; 512 varray[2] = &base->tv4; 513 varray[3] = &base->tv5; 514 for (i = 0; i < 4; i++) { 515 j = INDEX(i); 516 do { 517 if (list_empty(varray[i]->vec + j)) { 518 j = (j + 1) & TVN_MASK; 519 continue; 520 } 521 list_for_each_entry(nte, varray[i]->vec + j, entry) 522 if (time_before(nte->expires, expires)) 523 expires = nte->expires; 524 if (j < (INDEX(i)) && i < 3) 525 list = varray[i + 1]->vec + (INDEX(i + 1)); 526 goto found; 527 } while (j != (INDEX(i))); 528 } 529found: 530 if (list) { 531 /* 532 * The search wrapped. We need to look at the next list 533 * from next tv element that would cascade into tv element 534 * where we found the timer element. 535 */ 536 list_for_each_entry(nte, list, entry) { 537 if (time_before(nte->expires, expires)) 538 expires = nte->expires; 539 } 540 } 541 spin_unlock(&base->lock); 542 543 if (time_before(hr_expires, expires)) 544 return hr_expires; 545 546 return expires; 547} 548#endif 549 550/******************************************************************/ 551 552/* 553 * Timekeeping variables 554 */ 555unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ 556unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */ 557 558/* 559 * The current time 560 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 561 * for sub jiffie times) to get to monotonic time. Monotonic is pegged 562 * at zero at system boot time, so wall_to_monotonic will be negative, 563 * however, we will ALWAYS keep the tv_nsec part positive so we can use 564 * the usual normalization. 565 */ 566struct timespec xtime __attribute__ ((aligned (16))); 567struct timespec wall_to_monotonic __attribute__ ((aligned (16))); 568 569EXPORT_SYMBOL(xtime); 570 571/* Don't completely fail for HZ > 500. */ 572int tickadj = 500/HZ ? : 1; /* microsecs */ 573 574 575/* 576 * phase-lock loop variables 577 */ 578/* TIME_ERROR prevents overwriting the CMOS clock */ 579int time_state = TIME_OK; /* clock synchronization status */ 580int time_status = STA_UNSYNC; /* clock status bits */ 581long time_offset; /* time adjustment (us) */ 582long time_constant = 2; /* pll time constant */ 583long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ 584long time_precision = 1; /* clock precision (us) */ 585long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ 586long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ 587static long time_phase; /* phase offset (scaled us) */ 588long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; 589 /* frequency offset (scaled ppm)*/ 590static long time_adj; /* tick adjust (scaled 1 / HZ) */ 591long time_reftime; /* time at last adjustment (s) */ 592long time_adjust; 593long time_next_adjust; 594 595/* 596 * this routine handles the overflow of the microsecond field 597 * 598 * The tricky bits of code to handle the accurate clock support 599 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. 600 * They were originally developed for SUN and DEC kernels. 601 * All the kudos should go to Dave for this stuff. 602 * 603 */ 604static void second_overflow(void) 605{ 606 long ltemp; 607 608 /* Bump the maxerror field */ 609 time_maxerror += time_tolerance >> SHIFT_USEC; 610 if (time_maxerror > NTP_PHASE_LIMIT) { 611 time_maxerror = NTP_PHASE_LIMIT; 612 time_status |= STA_UNSYNC; 613 } 614 615 /* 616 * Leap second processing. If in leap-insert state at the end of the 617 * day, the system clock is set back one second; if in leap-delete 618 * state, the system clock is set ahead one second. The microtime() 619 * routine or external clock driver will insure that reported time is 620 * always monotonic. The ugly divides should be replaced. 621 */ 622 switch (time_state) { 623 case TIME_OK: 624 if (time_status & STA_INS) 625 time_state = TIME_INS; 626 else if (time_status & STA_DEL) 627 time_state = TIME_DEL; 628 break; 629 case TIME_INS: 630 if (xtime.tv_sec % 86400 == 0) { 631 xtime.tv_sec--; 632 wall_to_monotonic.tv_sec++; 633 /* 634 * The timer interpolator will make time change 635 * gradually instead of an immediate jump by one second 636 */ 637 time_interpolator_update(-NSEC_PER_SEC); 638 time_state = TIME_OOP; 639 clock_was_set(); 640 printk(KERN_NOTICE "Clock: inserting leap second " 641 "23:59:60 UTC\n"); 642 } 643 break; 644 case TIME_DEL: 645 if ((xtime.tv_sec + 1) % 86400 == 0) { 646 xtime.tv_sec++; 647 wall_to_monotonic.tv_sec--; 648 /* 649 * Use of time interpolator for a gradual change of 650 * time 651 */ 652 time_interpolator_update(NSEC_PER_SEC); 653 time_state = TIME_WAIT; 654 clock_was_set(); 655 printk(KERN_NOTICE "Clock: deleting leap second " 656 "23:59:59 UTC\n"); 657 } 658 break; 659 case TIME_OOP: 660 time_state = TIME_WAIT; 661 break; 662 case TIME_WAIT: 663 if (!(time_status & (STA_INS | STA_DEL))) 664 time_state = TIME_OK; 665 } 666 667 /* 668 * Compute the phase adjustment for the next second. In PLL mode, the 669 * offset is reduced by a fixed factor times the time constant. In FLL 670 * mode the offset is used directly. In either mode, the maximum phase 671 * adjustment for each second is clamped so as to spread the adjustment 672 * over not more than the number of seconds between updates. 673 */ 674 ltemp = time_offset; 675 if (!(time_status & STA_FLL)) 676 ltemp = shift_right(ltemp, SHIFT_KG + time_constant); 677 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); 678 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); 679 time_offset -= ltemp; 680 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); 681 682 /* 683 * Compute the frequency estimate and additional phase adjustment due 684 * to frequency error for the next second. 685 */ 686 ltemp = time_freq; 687 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); 688 689#if HZ == 100 690 /* 691 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to 692 * get 128.125; => only 0.125% error (p. 14) 693 */ 694 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); 695#endif 696#if HZ == 250 697 /* 698 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and 699 * 0.78125% to get 255.85938; => only 0.05% error (p. 14) 700 */ 701 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); 702#endif 703#if HZ == 1000 704 /* 705 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and 706 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) 707 */ 708 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); 709#endif 710} 711 712/* 713 * Returns how many microseconds we need to add to xtime this tick 714 * in doing an adjustment requested with adjtime. 715 */ 716static long adjtime_adjustment(void) 717{ 718 long time_adjust_step; 719 720 time_adjust_step = time_adjust; 721 if (time_adjust_step) { 722 /* 723 * We are doing an adjtime thing. Prepare time_adjust_step to 724 * be within bounds. Note that a positive time_adjust means we 725 * want the clock to run faster. 726 * 727 * Limit the amount of the step to be in the range 728 * -tickadj .. +tickadj 729 */ 730 time_adjust_step = min(time_adjust_step, (long)tickadj); 731 time_adjust_step = max(time_adjust_step, (long)-tickadj); 732 } 733 return time_adjust_step; 734} 735 736/* in the NTP reference this is called "hardclock()" */ 737static void update_wall_time_one_tick(void) 738{ 739 long time_adjust_step, delta_nsec; 740 741 time_adjust_step = adjtime_adjustment(); 742 if (time_adjust_step) 743 /* Reduce by this step the amount of time left */ 744 time_adjust -= time_adjust_step; 745 delta_nsec = tick_nsec + time_adjust_step * 1000; 746 /* 747 * Advance the phase, once it gets to one microsecond, then 748 * advance the tick more. 749 */ 750 time_phase += time_adj; 751 if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) { 752 long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10)); 753 time_phase -= ltemp << (SHIFT_SCALE - 10); 754 delta_nsec += ltemp; 755 } 756 xtime.tv_nsec += delta_nsec; 757 time_interpolator_update(delta_nsec); 758 759 /* Changes by adjtime() do not take effect till next tick. */ 760 if (time_next_adjust != 0) { 761 time_adjust = time_next_adjust; 762 time_next_adjust = 0; 763 } 764} 765 766/* 767 * Return how long ticks are at the moment, that is, how much time 768 * update_wall_time_one_tick will add to xtime next time we call it 769 * (assuming no calls to do_adjtimex in the meantime). 770 * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10 771 * bits to the right of the binary point. 772 * This function has no side-effects. 773 */ 774u64 current_tick_length(void) 775{ 776 long delta_nsec; 777 778 delta_nsec = tick_nsec + adjtime_adjustment() * 1000; 779 return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj; 780} 781 782/* 783 * Using a loop looks inefficient, but "ticks" is 784 * usually just one (we shouldn't be losing ticks, 785 * we're doing this this way mainly for interrupt 786 * latency reasons, not because we think we'll 787 * have lots of lost timer ticks 788 */ 789static void update_wall_time(unsigned long ticks) 790{ 791 do { 792 ticks--; 793 update_wall_time_one_tick(); 794 if (xtime.tv_nsec >= 1000000000) { 795 xtime.tv_nsec -= 1000000000; 796 xtime.tv_sec++; 797 second_overflow(); 798 } 799 } while (ticks); 800} 801 802/* 803 * Called from the timer interrupt handler to charge one tick to the current 804 * process. user_tick is 1 if the tick is user time, 0 for system. 805 */ 806void update_process_times(int user_tick) 807{ 808 struct task_struct *p = current; 809 int cpu = smp_processor_id(); 810 811 /* Note: this timer irq context must be accounted for as well. */ 812 if (user_tick) 813 account_user_time(p, jiffies_to_cputime(1)); 814 else 815 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); 816 run_local_timers(); 817 if (rcu_pending(cpu)) 818 rcu_check_callbacks(cpu, user_tick); 819 scheduler_tick(); 820 run_posix_cpu_timers(p); 821} 822 823/* 824 * Nr of active tasks - counted in fixed-point numbers 825 */ 826static unsigned long count_active_tasks(void) 827{ 828 return nr_active() * FIXED_1; 829} 830 831/* 832 * Hmm.. Changed this, as the GNU make sources (load.c) seems to 833 * imply that avenrun[] is the standard name for this kind of thing. 834 * Nothing else seems to be standardized: the fractional size etc 835 * all seem to differ on different machines. 836 * 837 * Requires xtime_lock to access. 838 */ 839unsigned long avenrun[3]; 840 841EXPORT_SYMBOL(avenrun); 842 843/* 844 * calc_load - given tick count, update the avenrun load estimates. 845 * This is called while holding a write_lock on xtime_lock. 846 */ 847static inline void calc_load(unsigned long ticks) 848{ 849 unsigned long active_tasks; /* fixed-point */ 850 static int count = LOAD_FREQ; 851 852 count -= ticks; 853 if (count < 0) { 854 count += LOAD_FREQ; 855 active_tasks = count_active_tasks(); 856 CALC_LOAD(avenrun[0], EXP_1, active_tasks); 857 CALC_LOAD(avenrun[1], EXP_5, active_tasks); 858 CALC_LOAD(avenrun[2], EXP_15, active_tasks); 859 } 860} 861 862/* jiffies at the most recent update of wall time */ 863unsigned long wall_jiffies = INITIAL_JIFFIES; 864 865/* 866 * This read-write spinlock protects us from races in SMP while 867 * playing with xtime and avenrun. 868 */ 869#ifndef ARCH_HAVE_XTIME_LOCK 870seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; 871 872EXPORT_SYMBOL(xtime_lock); 873#endif 874 875/* 876 * This function runs timers and the timer-tq in bottom half context. 877 */ 878static void run_timer_softirq(struct softirq_action *h) 879{ 880 tvec_base_t *base = __get_cpu_var(tvec_bases); 881 882 hrtimer_run_queues(); 883 if (time_after_eq(jiffies, base->timer_jiffies)) 884 __run_timers(base); 885} 886 887/* 888 * Called by the local, per-CPU timer interrupt on SMP. 889 */ 890void run_local_timers(void) 891{ 892 raise_softirq(TIMER_SOFTIRQ); 893 softlockup_tick(); 894} 895 896/* 897 * Called by the timer interrupt. xtime_lock must already be taken 898 * by the timer IRQ! 899 */ 900static inline void update_times(void) 901{ 902 unsigned long ticks; 903 904 ticks = jiffies - wall_jiffies; 905 if (ticks) { 906 wall_jiffies += ticks; 907 update_wall_time(ticks); 908 } 909 calc_load(ticks); 910} 911 912/* 913 * The 64-bit jiffies value is not atomic - you MUST NOT read it 914 * without sampling the sequence number in xtime_lock. 915 * jiffies is defined in the linker script... 916 */ 917 918void do_timer(struct pt_regs *regs) 919{ 920 jiffies_64++; 921 /* prevent loading jiffies before storing new jiffies_64 value. */ 922 barrier(); 923 update_times(); 924} 925 926#ifdef __ARCH_WANT_SYS_ALARM 927 928/* 929 * For backwards compatibility? This can be done in libc so Alpha 930 * and all newer ports shouldn't need it. 931 */ 932asmlinkage unsigned long sys_alarm(unsigned int seconds) 933{ 934 return alarm_setitimer(seconds); 935} 936 937#endif 938 939#ifndef __alpha__ 940 941/* 942 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this 943 * should be moved into arch/i386 instead? 944 */ 945 946/** 947 * sys_getpid - return the thread group id of the current process 948 * 949 * Note, despite the name, this returns the tgid not the pid. The tgid and 950 * the pid are identical unless CLONE_THREAD was specified on clone() in 951 * which case the tgid is the same in all threads of the same group. 952 * 953 * This is SMP safe as current->tgid does not change. 954 */ 955asmlinkage long sys_getpid(void) 956{ 957 return current->tgid; 958} 959 960/* 961 * Accessing ->group_leader->real_parent is not SMP-safe, it could 962 * change from under us. However, rather than getting any lock 963 * we can use an optimistic algorithm: get the parent 964 * pid, and go back and check that the parent is still 965 * the same. If it has changed (which is extremely unlikely 966 * indeed), we just try again.. 967 * 968 * NOTE! This depends on the fact that even if we _do_ 969 * get an old value of "parent", we can happily dereference 970 * the pointer (it was and remains a dereferencable kernel pointer 971 * no matter what): we just can't necessarily trust the result 972 * until we know that the parent pointer is valid. 973 * 974 * NOTE2: ->group_leader never changes from under us. 975 */ 976asmlinkage long sys_getppid(void) 977{ 978 int pid; 979 struct task_struct *me = current; 980 struct task_struct *parent; 981 982 parent = me->group_leader->real_parent; 983 for (;;) { 984 pid = parent->tgid; 985#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 986{ 987 struct task_struct *old = parent; 988 989 /* 990 * Make sure we read the pid before re-reading the 991 * parent pointer: 992 */ 993 smp_rmb(); 994 parent = me->group_leader->real_parent; 995 if (old != parent) 996 continue; 997} 998#endif 999 break; 1000 } 1001 return pid; 1002} 1003 1004asmlinkage long sys_getuid(void) 1005{ 1006 /* Only we change this so SMP safe */ 1007 return current->uid; 1008} 1009 1010asmlinkage long sys_geteuid(void) 1011{ 1012 /* Only we change this so SMP safe */ 1013 return current->euid; 1014} 1015 1016asmlinkage long sys_getgid(void) 1017{ 1018 /* Only we change this so SMP safe */ 1019 return current->gid; 1020} 1021 1022asmlinkage long sys_getegid(void) 1023{ 1024 /* Only we change this so SMP safe */ 1025 return current->egid; 1026} 1027 1028#endif 1029 1030static void process_timeout(unsigned long __data) 1031{ 1032 wake_up_process((task_t *)__data); 1033} 1034 1035/** 1036 * schedule_timeout - sleep until timeout 1037 * @timeout: timeout value in jiffies 1038 * 1039 * Make the current task sleep until @timeout jiffies have 1040 * elapsed. The routine will return immediately unless 1041 * the current task state has been set (see set_current_state()). 1042 * 1043 * You can set the task state as follows - 1044 * 1045 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to 1046 * pass before the routine returns. The routine will return 0 1047 * 1048 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1049 * delivered to the current task. In this case the remaining time 1050 * in jiffies will be returned, or 0 if the timer expired in time 1051 * 1052 * The current task state is guaranteed to be TASK_RUNNING when this 1053 * routine returns. 1054 * 1055 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule 1056 * the CPU away without a bound on the timeout. In this case the return 1057 * value will be %MAX_SCHEDULE_TIMEOUT. 1058 * 1059 * In all cases the return value is guaranteed to be non-negative. 1060 */ 1061fastcall signed long __sched schedule_timeout(signed long timeout) 1062{ 1063 struct timer_list timer; 1064 unsigned long expire; 1065 1066 switch (timeout) 1067 { 1068 case MAX_SCHEDULE_TIMEOUT: 1069 /* 1070 * These two special cases are useful to be comfortable 1071 * in the caller. Nothing more. We could take 1072 * MAX_SCHEDULE_TIMEOUT from one of the negative value 1073 * but I' d like to return a valid offset (>=0) to allow 1074 * the caller to do everything it want with the retval. 1075 */ 1076 schedule(); 1077 goto out; 1078 default: 1079 /* 1080 * Another bit of PARANOID. Note that the retval will be 1081 * 0 since no piece of kernel is supposed to do a check 1082 * for a negative retval of schedule_timeout() (since it 1083 * should never happens anyway). You just have the printk() 1084 * that will tell you if something is gone wrong and where. 1085 */ 1086 if (timeout < 0) 1087 { 1088 printk(KERN_ERR "schedule_timeout: wrong timeout " 1089 "value %lx from %p\n", timeout, 1090 __builtin_return_address(0)); 1091 current->state = TASK_RUNNING; 1092 goto out; 1093 } 1094 } 1095 1096 expire = timeout + jiffies; 1097 1098 setup_timer(&timer, process_timeout, (unsigned long)current); 1099 __mod_timer(&timer, expire); 1100 schedule(); 1101 del_singleshot_timer_sync(&timer); 1102 1103 timeout = expire - jiffies; 1104 1105 out: 1106 return timeout < 0 ? 0 : timeout; 1107} 1108EXPORT_SYMBOL(schedule_timeout); 1109 1110/* 1111 * We can use __set_current_state() here because schedule_timeout() calls 1112 * schedule() unconditionally. 1113 */ 1114signed long __sched schedule_timeout_interruptible(signed long timeout) 1115{ 1116 __set_current_state(TASK_INTERRUPTIBLE); 1117 return schedule_timeout(timeout); 1118} 1119EXPORT_SYMBOL(schedule_timeout_interruptible); 1120 1121signed long __sched schedule_timeout_uninterruptible(signed long timeout) 1122{ 1123 __set_current_state(TASK_UNINTERRUPTIBLE); 1124 return schedule_timeout(timeout); 1125} 1126EXPORT_SYMBOL(schedule_timeout_uninterruptible); 1127 1128/* Thread ID - the internal kernel "pid" */ 1129asmlinkage long sys_gettid(void) 1130{ 1131 return current->pid; 1132} 1133 1134/* 1135 * sys_sysinfo - fill in sysinfo struct 1136 */ 1137asmlinkage long sys_sysinfo(struct sysinfo __user *info) 1138{ 1139 struct sysinfo val; 1140 unsigned long mem_total, sav_total; 1141 unsigned int mem_unit, bitcount; 1142 unsigned long seq; 1143 1144 memset((char *)&val, 0, sizeof(struct sysinfo)); 1145 1146 do { 1147 struct timespec tp; 1148 seq = read_seqbegin(&xtime_lock); 1149 1150 /* 1151 * This is annoying. The below is the same thing 1152 * posix_get_clock_monotonic() does, but it wants to 1153 * take the lock which we want to cover the loads stuff 1154 * too. 1155 */ 1156 1157 getnstimeofday(&tp); 1158 tp.tv_sec += wall_to_monotonic.tv_sec; 1159 tp.tv_nsec += wall_to_monotonic.tv_nsec; 1160 if (tp.tv_nsec - NSEC_PER_SEC >= 0) { 1161 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; 1162 tp.tv_sec++; 1163 } 1164 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); 1165 1166 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); 1167 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); 1168 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); 1169 1170 val.procs = nr_threads; 1171 } while (read_seqretry(&xtime_lock, seq)); 1172 1173 si_meminfo(&val); 1174 si_swapinfo(&val); 1175 1176 /* 1177 * If the sum of all the available memory (i.e. ram + swap) 1178 * is less than can be stored in a 32 bit unsigned long then 1179 * we can be binary compatible with 2.2.x kernels. If not, 1180 * well, in that case 2.2.x was broken anyways... 1181 * 1182 * -Erik Andersen <andersee@debian.org> 1183 */ 1184 1185 mem_total = val.totalram + val.totalswap; 1186 if (mem_total < val.totalram || mem_total < val.totalswap) 1187 goto out; 1188 bitcount = 0; 1189 mem_unit = val.mem_unit; 1190 while (mem_unit > 1) { 1191 bitcount++; 1192 mem_unit >>= 1; 1193 sav_total = mem_total; 1194 mem_total <<= 1; 1195 if (mem_total < sav_total) 1196 goto out; 1197 } 1198 1199 /* 1200 * If mem_total did not overflow, multiply all memory values by 1201 * val.mem_unit and set it to 1. This leaves things compatible 1202 * with 2.2.x, and also retains compatibility with earlier 2.4.x 1203 * kernels... 1204 */ 1205 1206 val.mem_unit = 1; 1207 val.totalram <<= bitcount; 1208 val.freeram <<= bitcount; 1209 val.sharedram <<= bitcount; 1210 val.bufferram <<= bitcount; 1211 val.totalswap <<= bitcount; 1212 val.freeswap <<= bitcount; 1213 val.totalhigh <<= bitcount; 1214 val.freehigh <<= bitcount; 1215 1216 out: 1217 if (copy_to_user(info, &val, sizeof(struct sysinfo))) 1218 return -EFAULT; 1219 1220 return 0; 1221} 1222 1223static int __devinit init_timers_cpu(int cpu) 1224{ 1225 int j; 1226 tvec_base_t *base; 1227 1228 base = per_cpu(tvec_bases, cpu); 1229 if (!base) { 1230 static char boot_done; 1231 1232 /* 1233 * Cannot do allocation in init_timers as that runs before the 1234 * allocator initializes (and would waste memory if there are 1235 * more possible CPUs than will ever be installed/brought up). 1236 */ 1237 if (boot_done) { 1238 base = kmalloc_node(sizeof(*base), GFP_KERNEL, 1239 cpu_to_node(cpu)); 1240 if (!base) 1241 return -ENOMEM; 1242 memset(base, 0, sizeof(*base)); 1243 } else { 1244 base = &boot_tvec_bases; 1245 boot_done = 1; 1246 } 1247 per_cpu(tvec_bases, cpu) = base; 1248 } 1249 spin_lock_init(&base->lock); 1250 for (j = 0; j < TVN_SIZE; j++) { 1251 INIT_LIST_HEAD(base->tv5.vec + j); 1252 INIT_LIST_HEAD(base->tv4.vec + j); 1253 INIT_LIST_HEAD(base->tv3.vec + j); 1254 INIT_LIST_HEAD(base->tv2.vec + j); 1255 } 1256 for (j = 0; j < TVR_SIZE; j++) 1257 INIT_LIST_HEAD(base->tv1.vec + j); 1258 1259 base->timer_jiffies = jiffies; 1260 return 0; 1261} 1262 1263#ifdef CONFIG_HOTPLUG_CPU 1264static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) 1265{ 1266 struct timer_list *timer; 1267 1268 while (!list_empty(head)) { 1269 timer = list_entry(head->next, struct timer_list, entry); 1270 detach_timer(timer, 0); 1271 timer->base = new_base; 1272 internal_add_timer(new_base, timer); 1273 } 1274} 1275 1276static void __devinit migrate_timers(int cpu) 1277{ 1278 tvec_base_t *old_base; 1279 tvec_base_t *new_base; 1280 int i; 1281 1282 BUG_ON(cpu_online(cpu)); 1283 old_base = per_cpu(tvec_bases, cpu); 1284 new_base = get_cpu_var(tvec_bases); 1285 1286 local_irq_disable(); 1287 spin_lock(&new_base->lock); 1288 spin_lock(&old_base->lock); 1289 1290 BUG_ON(old_base->running_timer); 1291 1292 for (i = 0; i < TVR_SIZE; i++) 1293 migrate_timer_list(new_base, old_base->tv1.vec + i); 1294 for (i = 0; i < TVN_SIZE; i++) { 1295 migrate_timer_list(new_base, old_base->tv2.vec + i); 1296 migrate_timer_list(new_base, old_base->tv3.vec + i); 1297 migrate_timer_list(new_base, old_base->tv4.vec + i); 1298 migrate_timer_list(new_base, old_base->tv5.vec + i); 1299 } 1300 1301 spin_unlock(&old_base->lock); 1302 spin_unlock(&new_base->lock); 1303 local_irq_enable(); 1304 put_cpu_var(tvec_bases); 1305} 1306#endif /* CONFIG_HOTPLUG_CPU */ 1307 1308static int __devinit timer_cpu_notify(struct notifier_block *self, 1309 unsigned long action, void *hcpu) 1310{ 1311 long cpu = (long)hcpu; 1312 switch(action) { 1313 case CPU_UP_PREPARE: 1314 if (init_timers_cpu(cpu) < 0) 1315 return NOTIFY_BAD; 1316 break; 1317#ifdef CONFIG_HOTPLUG_CPU 1318 case CPU_DEAD: 1319 migrate_timers(cpu); 1320 break; 1321#endif 1322 default: 1323 break; 1324 } 1325 return NOTIFY_OK; 1326} 1327 1328static struct notifier_block __devinitdata timers_nb = { 1329 .notifier_call = timer_cpu_notify, 1330}; 1331 1332 1333void __init init_timers(void) 1334{ 1335 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, 1336 (void *)(long)smp_processor_id()); 1337 register_cpu_notifier(&timers_nb); 1338 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); 1339} 1340 1341#ifdef CONFIG_TIME_INTERPOLATION 1342 1343struct time_interpolator *time_interpolator __read_mostly; 1344static struct time_interpolator *time_interpolator_list __read_mostly; 1345static DEFINE_SPINLOCK(time_interpolator_lock); 1346 1347static inline u64 time_interpolator_get_cycles(unsigned int src) 1348{ 1349 unsigned long (*x)(void); 1350 1351 switch (src) 1352 { 1353 case TIME_SOURCE_FUNCTION: 1354 x = time_interpolator->addr; 1355 return x(); 1356 1357 case TIME_SOURCE_MMIO64 : 1358 return readq_relaxed((void __iomem *)time_interpolator->addr); 1359 1360 case TIME_SOURCE_MMIO32 : 1361 return readl_relaxed((void __iomem *)time_interpolator->addr); 1362 1363 default: return get_cycles(); 1364 } 1365} 1366 1367static inline u64 time_interpolator_get_counter(int writelock) 1368{ 1369 unsigned int src = time_interpolator->source; 1370 1371 if (time_interpolator->jitter) 1372 { 1373 u64 lcycle; 1374 u64 now; 1375 1376 do { 1377 lcycle = time_interpolator->last_cycle; 1378 now = time_interpolator_get_cycles(src); 1379 if (lcycle && time_after(lcycle, now)) 1380 return lcycle; 1381 1382 /* When holding the xtime write lock, there's no need 1383 * to add the overhead of the cmpxchg. Readers are 1384 * force to retry until the write lock is released. 1385 */ 1386 if (writelock) { 1387 time_interpolator->last_cycle = now; 1388 return now; 1389 } 1390 /* Keep track of the last timer value returned. The use of cmpxchg here 1391 * will cause contention in an SMP environment. 1392 */ 1393 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); 1394 return now; 1395 } 1396 else 1397 return time_interpolator_get_cycles(src); 1398} 1399 1400void time_interpolator_reset(void) 1401{ 1402 time_interpolator->offset = 0; 1403 time_interpolator->last_counter = time_interpolator_get_counter(1); 1404} 1405 1406#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) 1407 1408unsigned long time_interpolator_get_offset(void) 1409{ 1410 /* If we do not have a time interpolator set up then just return zero */ 1411 if (!time_interpolator) 1412 return 0; 1413 1414 return time_interpolator->offset + 1415 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); 1416} 1417 1418#define INTERPOLATOR_ADJUST 65536 1419#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST 1420 1421static void time_interpolator_update(long delta_nsec) 1422{ 1423 u64 counter; 1424 unsigned long offset; 1425 1426 /* If there is no time interpolator set up then do nothing */ 1427 if (!time_interpolator) 1428 return; 1429 1430 /* 1431 * The interpolator compensates for late ticks by accumulating the late 1432 * time in time_interpolator->offset. A tick earlier than expected will 1433 * lead to a reset of the offset and a corresponding jump of the clock 1434 * forward. Again this only works if the interpolator clock is running 1435 * slightly slower than the regular clock and the tuning logic insures 1436 * that. 1437 */ 1438 1439 counter = time_interpolator_get_counter(1); 1440 offset = time_interpolator->offset + 1441 GET_TI_NSECS(counter, time_interpolator); 1442 1443 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) 1444 time_interpolator->offset = offset - delta_nsec; 1445 else { 1446 time_interpolator->skips++; 1447 time_interpolator->ns_skipped += delta_nsec - offset; 1448 time_interpolator->offset = 0; 1449 } 1450 time_interpolator->last_counter = counter; 1451 1452 /* Tuning logic for time interpolator invoked every minute or so. 1453 * Decrease interpolator clock speed if no skips occurred and an offset is carried. 1454 * Increase interpolator clock speed if we skip too much time. 1455 */ 1456 if (jiffies % INTERPOLATOR_ADJUST == 0) 1457 { 1458 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) 1459 time_interpolator->nsec_per_cyc--; 1460 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) 1461 time_interpolator->nsec_per_cyc++; 1462 time_interpolator->skips = 0; 1463 time_interpolator->ns_skipped = 0; 1464 } 1465} 1466 1467static inline int 1468is_better_time_interpolator(struct time_interpolator *new) 1469{ 1470 if (!time_interpolator) 1471 return 1; 1472 return new->frequency > 2*time_interpolator->frequency || 1473 (unsigned long)new->drift < (unsigned long)time_interpolator->drift; 1474} 1475 1476void 1477register_time_interpolator(struct time_interpolator *ti) 1478{ 1479 unsigned long flags; 1480 1481 /* Sanity check */ 1482 BUG_ON(ti->frequency == 0 || ti->mask == 0); 1483 1484 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; 1485 spin_lock(&time_interpolator_lock); 1486 write_seqlock_irqsave(&xtime_lock, flags); 1487 if (is_better_time_interpolator(ti)) { 1488 time_interpolator = ti; 1489 time_interpolator_reset(); 1490 } 1491 write_sequnlock_irqrestore(&xtime_lock, flags); 1492 1493 ti->next = time_interpolator_list; 1494 time_interpolator_list = ti; 1495 spin_unlock(&time_interpolator_lock); 1496} 1497 1498void 1499unregister_time_interpolator(struct time_interpolator *ti) 1500{ 1501 struct time_interpolator *curr, **prev; 1502 unsigned long flags; 1503 1504 spin_lock(&time_interpolator_lock); 1505 prev = &time_interpolator_list; 1506 for (curr = *prev; curr; curr = curr->next) { 1507 if (curr == ti) { 1508 *prev = curr->next; 1509 break; 1510 } 1511 prev = &curr->next; 1512 } 1513 1514 write_seqlock_irqsave(&xtime_lock, flags); 1515 if (ti == time_interpolator) { 1516 /* we lost the best time-interpolator: */ 1517 time_interpolator = NULL; 1518 /* find the next-best interpolator */ 1519 for (curr = time_interpolator_list; curr; curr = curr->next) 1520 if (is_better_time_interpolator(curr)) 1521 time_interpolator = curr; 1522 time_interpolator_reset(); 1523 } 1524 write_sequnlock_irqrestore(&xtime_lock, flags); 1525 spin_unlock(&time_interpolator_lock); 1526} 1527#endif /* CONFIG_TIME_INTERPOLATION */ 1528 1529/** 1530 * msleep - sleep safely even with waitqueue interruptions 1531 * @msecs: Time in milliseconds to sleep for 1532 */ 1533void msleep(unsigned int msecs) 1534{ 1535 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1536 1537 while (timeout) 1538 timeout = schedule_timeout_uninterruptible(timeout); 1539} 1540 1541EXPORT_SYMBOL(msleep); 1542 1543/** 1544 * msleep_interruptible - sleep waiting for signals 1545 * @msecs: Time in milliseconds to sleep for 1546 */ 1547unsigned long msleep_interruptible(unsigned int msecs) 1548{ 1549 unsigned long timeout = msecs_to_jiffies(msecs) + 1; 1550 1551 while (timeout && !signal_pending(current)) 1552 timeout = schedule_timeout_interruptible(timeout); 1553 return jiffies_to_msecs(timeout); 1554} 1555 1556EXPORT_SYMBOL(msleep_interruptible);