Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifndef __ASSEMBLY__
5#ifndef __GENERATING_BOUNDS_H
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/bitops.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <linux/seqlock.h>
16#include <linux/nodemask.h>
17#include <linux/pageblock-flags.h>
18#include <linux/page-flags-layout.h>
19#include <linux/atomic.h>
20#include <asm/page.h>
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
38enum migratetype {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60#ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62#endif
63 MIGRATE_TYPES
64};
65
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72#else
73# define is_migrate_cma(migratetype) false
74# define is_migrate_cma_page(_page) false
75#endif
76
77static inline bool is_migrate_movable(int mt)
78{
79 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
80}
81
82#define for_each_migratetype_order(order, type) \
83 for (order = 0; order < MAX_ORDER; order++) \
84 for (type = 0; type < MIGRATE_TYPES; type++)
85
86extern int page_group_by_mobility_disabled;
87
88#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
89#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
90
91#define get_pageblock_migratetype(page) \
92 get_pfnblock_flags_mask(page, page_to_pfn(page), \
93 PB_migrate_end, MIGRATETYPE_MASK)
94
95struct free_area {
96 struct list_head free_list[MIGRATE_TYPES];
97 unsigned long nr_free;
98};
99
100struct pglist_data;
101
102/*
103 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
104 * So add a wild amount of padding here to ensure that they fall into separate
105 * cachelines. There are very few zone structures in the machine, so space
106 * consumption is not a concern here.
107 */
108#if defined(CONFIG_SMP)
109struct zone_padding {
110 char x[0];
111} ____cacheline_internodealigned_in_smp;
112#define ZONE_PADDING(name) struct zone_padding name;
113#else
114#define ZONE_PADDING(name)
115#endif
116
117#ifdef CONFIG_NUMA
118enum numa_stat_item {
119 NUMA_HIT, /* allocated in intended node */
120 NUMA_MISS, /* allocated in non intended node */
121 NUMA_FOREIGN, /* was intended here, hit elsewhere */
122 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
123 NUMA_LOCAL, /* allocation from local node */
124 NUMA_OTHER, /* allocation from other node */
125 NR_VM_NUMA_STAT_ITEMS
126};
127#else
128#define NR_VM_NUMA_STAT_ITEMS 0
129#endif
130
131enum zone_stat_item {
132 /* First 128 byte cacheline (assuming 64 bit words) */
133 NR_FREE_PAGES,
134 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
135 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
136 NR_ZONE_ACTIVE_ANON,
137 NR_ZONE_INACTIVE_FILE,
138 NR_ZONE_ACTIVE_FILE,
139 NR_ZONE_UNEVICTABLE,
140 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
141 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
142 NR_PAGETABLE, /* used for pagetables */
143 NR_KERNEL_STACK_KB, /* measured in KiB */
144 /* Second 128 byte cacheline */
145 NR_BOUNCE,
146#if IS_ENABLED(CONFIG_ZSMALLOC)
147 NR_ZSPAGES, /* allocated in zsmalloc */
148#endif
149 NR_FREE_CMA_PAGES,
150 NR_VM_ZONE_STAT_ITEMS };
151
152enum node_stat_item {
153 NR_LRU_BASE,
154 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
155 NR_ACTIVE_ANON, /* " " " " " */
156 NR_INACTIVE_FILE, /* " " " " " */
157 NR_ACTIVE_FILE, /* " " " " " */
158 NR_UNEVICTABLE, /* " " " " " */
159 NR_SLAB_RECLAIMABLE,
160 NR_SLAB_UNRECLAIMABLE,
161 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
162 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
163 WORKINGSET_REFAULT,
164 WORKINGSET_ACTIVATE,
165 WORKINGSET_NODERECLAIM,
166 NR_ANON_MAPPED, /* Mapped anonymous pages */
167 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
168 only modified from process context */
169 NR_FILE_PAGES,
170 NR_FILE_DIRTY,
171 NR_WRITEBACK,
172 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
173 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
174 NR_SHMEM_THPS,
175 NR_SHMEM_PMDMAPPED,
176 NR_ANON_THPS,
177 NR_UNSTABLE_NFS, /* NFS unstable pages */
178 NR_VMSCAN_WRITE,
179 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
180 NR_DIRTIED, /* page dirtyings since bootup */
181 NR_WRITTEN, /* page writings since bootup */
182 NR_VM_NODE_STAT_ITEMS
183};
184
185/*
186 * We do arithmetic on the LRU lists in various places in the code,
187 * so it is important to keep the active lists LRU_ACTIVE higher in
188 * the array than the corresponding inactive lists, and to keep
189 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
190 *
191 * This has to be kept in sync with the statistics in zone_stat_item
192 * above and the descriptions in vmstat_text in mm/vmstat.c
193 */
194#define LRU_BASE 0
195#define LRU_ACTIVE 1
196#define LRU_FILE 2
197
198enum lru_list {
199 LRU_INACTIVE_ANON = LRU_BASE,
200 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
201 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
202 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
203 LRU_UNEVICTABLE,
204 NR_LRU_LISTS
205};
206
207#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
208
209#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
210
211static inline int is_file_lru(enum lru_list lru)
212{
213 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
214}
215
216static inline int is_active_lru(enum lru_list lru)
217{
218 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
219}
220
221struct zone_reclaim_stat {
222 /*
223 * The pageout code in vmscan.c keeps track of how many of the
224 * mem/swap backed and file backed pages are referenced.
225 * The higher the rotated/scanned ratio, the more valuable
226 * that cache is.
227 *
228 * The anon LRU stats live in [0], file LRU stats in [1]
229 */
230 unsigned long recent_rotated[2];
231 unsigned long recent_scanned[2];
232};
233
234struct lruvec {
235 struct list_head lists[NR_LRU_LISTS];
236 struct zone_reclaim_stat reclaim_stat;
237 /* Evictions & activations on the inactive file list */
238 atomic_long_t inactive_age;
239 /* Refaults at the time of last reclaim cycle */
240 unsigned long refaults;
241#ifdef CONFIG_MEMCG
242 struct pglist_data *pgdat;
243#endif
244};
245
246/* Mask used at gathering information at once (see memcontrol.c) */
247#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
248#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
249#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
250
251/* Isolate unmapped file */
252#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
253/* Isolate for asynchronous migration */
254#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
255/* Isolate unevictable pages */
256#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
257
258/* LRU Isolation modes. */
259typedef unsigned __bitwise isolate_mode_t;
260
261enum zone_watermarks {
262 WMARK_MIN,
263 WMARK_LOW,
264 WMARK_HIGH,
265 NR_WMARK
266};
267
268#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
269#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
270#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
271
272struct per_cpu_pages {
273 int count; /* number of pages in the list */
274 int high; /* high watermark, emptying needed */
275 int batch; /* chunk size for buddy add/remove */
276
277 /* Lists of pages, one per migrate type stored on the pcp-lists */
278 struct list_head lists[MIGRATE_PCPTYPES];
279};
280
281struct per_cpu_pageset {
282 struct per_cpu_pages pcp;
283#ifdef CONFIG_NUMA
284 s8 expire;
285 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
286#endif
287#ifdef CONFIG_SMP
288 s8 stat_threshold;
289 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
290#endif
291};
292
293struct per_cpu_nodestat {
294 s8 stat_threshold;
295 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
296};
297
298#endif /* !__GENERATING_BOUNDS.H */
299
300enum zone_type {
301#ifdef CONFIG_ZONE_DMA
302 /*
303 * ZONE_DMA is used when there are devices that are not able
304 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
305 * carve out the portion of memory that is needed for these devices.
306 * The range is arch specific.
307 *
308 * Some examples
309 *
310 * Architecture Limit
311 * ---------------------------
312 * parisc, ia64, sparc <4G
313 * s390 <2G
314 * arm Various
315 * alpha Unlimited or 0-16MB.
316 *
317 * i386, x86_64 and multiple other arches
318 * <16M.
319 */
320 ZONE_DMA,
321#endif
322#ifdef CONFIG_ZONE_DMA32
323 /*
324 * x86_64 needs two ZONE_DMAs because it supports devices that are
325 * only able to do DMA to the lower 16M but also 32 bit devices that
326 * can only do DMA areas below 4G.
327 */
328 ZONE_DMA32,
329#endif
330 /*
331 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
332 * performed on pages in ZONE_NORMAL if the DMA devices support
333 * transfers to all addressable memory.
334 */
335 ZONE_NORMAL,
336#ifdef CONFIG_HIGHMEM
337 /*
338 * A memory area that is only addressable by the kernel through
339 * mapping portions into its own address space. This is for example
340 * used by i386 to allow the kernel to address the memory beyond
341 * 900MB. The kernel will set up special mappings (page
342 * table entries on i386) for each page that the kernel needs to
343 * access.
344 */
345 ZONE_HIGHMEM,
346#endif
347 ZONE_MOVABLE,
348#ifdef CONFIG_ZONE_DEVICE
349 ZONE_DEVICE,
350#endif
351 __MAX_NR_ZONES
352
353};
354
355#ifndef __GENERATING_BOUNDS_H
356
357struct zone {
358 /* Read-mostly fields */
359
360 /* zone watermarks, access with *_wmark_pages(zone) macros */
361 unsigned long watermark[NR_WMARK];
362
363 unsigned long nr_reserved_highatomic;
364
365 /*
366 * We don't know if the memory that we're going to allocate will be
367 * freeable or/and it will be released eventually, so to avoid totally
368 * wasting several GB of ram we must reserve some of the lower zone
369 * memory (otherwise we risk to run OOM on the lower zones despite
370 * there being tons of freeable ram on the higher zones). This array is
371 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
372 * changes.
373 */
374 long lowmem_reserve[MAX_NR_ZONES];
375
376#ifdef CONFIG_NUMA
377 int node;
378#endif
379 struct pglist_data *zone_pgdat;
380 struct per_cpu_pageset __percpu *pageset;
381
382#ifndef CONFIG_SPARSEMEM
383 /*
384 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
385 * In SPARSEMEM, this map is stored in struct mem_section
386 */
387 unsigned long *pageblock_flags;
388#endif /* CONFIG_SPARSEMEM */
389
390 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
391 unsigned long zone_start_pfn;
392
393 /*
394 * spanned_pages is the total pages spanned by the zone, including
395 * holes, which is calculated as:
396 * spanned_pages = zone_end_pfn - zone_start_pfn;
397 *
398 * present_pages is physical pages existing within the zone, which
399 * is calculated as:
400 * present_pages = spanned_pages - absent_pages(pages in holes);
401 *
402 * managed_pages is present pages managed by the buddy system, which
403 * is calculated as (reserved_pages includes pages allocated by the
404 * bootmem allocator):
405 * managed_pages = present_pages - reserved_pages;
406 *
407 * So present_pages may be used by memory hotplug or memory power
408 * management logic to figure out unmanaged pages by checking
409 * (present_pages - managed_pages). And managed_pages should be used
410 * by page allocator and vm scanner to calculate all kinds of watermarks
411 * and thresholds.
412 *
413 * Locking rules:
414 *
415 * zone_start_pfn and spanned_pages are protected by span_seqlock.
416 * It is a seqlock because it has to be read outside of zone->lock,
417 * and it is done in the main allocator path. But, it is written
418 * quite infrequently.
419 *
420 * The span_seq lock is declared along with zone->lock because it is
421 * frequently read in proximity to zone->lock. It's good to
422 * give them a chance of being in the same cacheline.
423 *
424 * Write access to present_pages at runtime should be protected by
425 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
426 * present_pages should get_online_mems() to get a stable value.
427 *
428 * Read access to managed_pages should be safe because it's unsigned
429 * long. Write access to zone->managed_pages and totalram_pages are
430 * protected by managed_page_count_lock at runtime. Idealy only
431 * adjust_managed_page_count() should be used instead of directly
432 * touching zone->managed_pages and totalram_pages.
433 */
434 unsigned long managed_pages;
435 unsigned long spanned_pages;
436 unsigned long present_pages;
437
438 const char *name;
439
440#ifdef CONFIG_MEMORY_ISOLATION
441 /*
442 * Number of isolated pageblock. It is used to solve incorrect
443 * freepage counting problem due to racy retrieving migratetype
444 * of pageblock. Protected by zone->lock.
445 */
446 unsigned long nr_isolate_pageblock;
447#endif
448
449#ifdef CONFIG_MEMORY_HOTPLUG
450 /* see spanned/present_pages for more description */
451 seqlock_t span_seqlock;
452#endif
453
454 int initialized;
455
456 /* Write-intensive fields used from the page allocator */
457 ZONE_PADDING(_pad1_)
458
459 /* free areas of different sizes */
460 struct free_area free_area[MAX_ORDER];
461
462 /* zone flags, see below */
463 unsigned long flags;
464
465 /* Primarily protects free_area */
466 spinlock_t lock;
467
468 /* Write-intensive fields used by compaction and vmstats. */
469 ZONE_PADDING(_pad2_)
470
471 /*
472 * When free pages are below this point, additional steps are taken
473 * when reading the number of free pages to avoid per-cpu counter
474 * drift allowing watermarks to be breached
475 */
476 unsigned long percpu_drift_mark;
477
478#if defined CONFIG_COMPACTION || defined CONFIG_CMA
479 /* pfn where compaction free scanner should start */
480 unsigned long compact_cached_free_pfn;
481 /* pfn where async and sync compaction migration scanner should start */
482 unsigned long compact_cached_migrate_pfn[2];
483#endif
484
485#ifdef CONFIG_COMPACTION
486 /*
487 * On compaction failure, 1<<compact_defer_shift compactions
488 * are skipped before trying again. The number attempted since
489 * last failure is tracked with compact_considered.
490 */
491 unsigned int compact_considered;
492 unsigned int compact_defer_shift;
493 int compact_order_failed;
494#endif
495
496#if defined CONFIG_COMPACTION || defined CONFIG_CMA
497 /* Set to true when the PG_migrate_skip bits should be cleared */
498 bool compact_blockskip_flush;
499#endif
500
501 bool contiguous;
502
503 ZONE_PADDING(_pad3_)
504 /* Zone statistics */
505 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
506 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
507} ____cacheline_internodealigned_in_smp;
508
509enum pgdat_flags {
510 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
511 * a congested BDI
512 */
513 PGDAT_DIRTY, /* reclaim scanning has recently found
514 * many dirty file pages at the tail
515 * of the LRU.
516 */
517 PGDAT_WRITEBACK, /* reclaim scanning has recently found
518 * many pages under writeback
519 */
520 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
521};
522
523static inline unsigned long zone_end_pfn(const struct zone *zone)
524{
525 return zone->zone_start_pfn + zone->spanned_pages;
526}
527
528static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
529{
530 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
531}
532
533static inline bool zone_is_initialized(struct zone *zone)
534{
535 return zone->initialized;
536}
537
538static inline bool zone_is_empty(struct zone *zone)
539{
540 return zone->spanned_pages == 0;
541}
542
543/*
544 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
545 * intersection with the given zone
546 */
547static inline bool zone_intersects(struct zone *zone,
548 unsigned long start_pfn, unsigned long nr_pages)
549{
550 if (zone_is_empty(zone))
551 return false;
552 if (start_pfn >= zone_end_pfn(zone) ||
553 start_pfn + nr_pages <= zone->zone_start_pfn)
554 return false;
555
556 return true;
557}
558
559/*
560 * The "priority" of VM scanning is how much of the queues we will scan in one
561 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
562 * queues ("queue_length >> 12") during an aging round.
563 */
564#define DEF_PRIORITY 12
565
566/* Maximum number of zones on a zonelist */
567#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
568
569enum {
570 ZONELIST_FALLBACK, /* zonelist with fallback */
571#ifdef CONFIG_NUMA
572 /*
573 * The NUMA zonelists are doubled because we need zonelists that
574 * restrict the allocations to a single node for __GFP_THISNODE.
575 */
576 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
577#endif
578 MAX_ZONELISTS
579};
580
581/*
582 * This struct contains information about a zone in a zonelist. It is stored
583 * here to avoid dereferences into large structures and lookups of tables
584 */
585struct zoneref {
586 struct zone *zone; /* Pointer to actual zone */
587 int zone_idx; /* zone_idx(zoneref->zone) */
588};
589
590/*
591 * One allocation request operates on a zonelist. A zonelist
592 * is a list of zones, the first one is the 'goal' of the
593 * allocation, the other zones are fallback zones, in decreasing
594 * priority.
595 *
596 * To speed the reading of the zonelist, the zonerefs contain the zone index
597 * of the entry being read. Helper functions to access information given
598 * a struct zoneref are
599 *
600 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
601 * zonelist_zone_idx() - Return the index of the zone for an entry
602 * zonelist_node_idx() - Return the index of the node for an entry
603 */
604struct zonelist {
605 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
606};
607
608#ifndef CONFIG_DISCONTIGMEM
609/* The array of struct pages - for discontigmem use pgdat->lmem_map */
610extern struct page *mem_map;
611#endif
612
613/*
614 * On NUMA machines, each NUMA node would have a pg_data_t to describe
615 * it's memory layout. On UMA machines there is a single pglist_data which
616 * describes the whole memory.
617 *
618 * Memory statistics and page replacement data structures are maintained on a
619 * per-zone basis.
620 */
621struct bootmem_data;
622typedef struct pglist_data {
623 struct zone node_zones[MAX_NR_ZONES];
624 struct zonelist node_zonelists[MAX_ZONELISTS];
625 int nr_zones;
626#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
627 struct page *node_mem_map;
628#ifdef CONFIG_PAGE_EXTENSION
629 struct page_ext *node_page_ext;
630#endif
631#endif
632#ifndef CONFIG_NO_BOOTMEM
633 struct bootmem_data *bdata;
634#endif
635#ifdef CONFIG_MEMORY_HOTPLUG
636 /*
637 * Must be held any time you expect node_start_pfn, node_present_pages
638 * or node_spanned_pages stay constant. Holding this will also
639 * guarantee that any pfn_valid() stays that way.
640 *
641 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
642 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
643 *
644 * Nests above zone->lock and zone->span_seqlock
645 */
646 spinlock_t node_size_lock;
647#endif
648 unsigned long node_start_pfn;
649 unsigned long node_present_pages; /* total number of physical pages */
650 unsigned long node_spanned_pages; /* total size of physical page
651 range, including holes */
652 int node_id;
653 wait_queue_head_t kswapd_wait;
654 wait_queue_head_t pfmemalloc_wait;
655 struct task_struct *kswapd; /* Protected by
656 mem_hotplug_begin/end() */
657 int kswapd_order;
658 enum zone_type kswapd_classzone_idx;
659
660 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
661
662#ifdef CONFIG_COMPACTION
663 int kcompactd_max_order;
664 enum zone_type kcompactd_classzone_idx;
665 wait_queue_head_t kcompactd_wait;
666 struct task_struct *kcompactd;
667#endif
668#ifdef CONFIG_NUMA_BALANCING
669 /* Lock serializing the migrate rate limiting window */
670 spinlock_t numabalancing_migrate_lock;
671
672 /* Rate limiting time interval */
673 unsigned long numabalancing_migrate_next_window;
674
675 /* Number of pages migrated during the rate limiting time interval */
676 unsigned long numabalancing_migrate_nr_pages;
677#endif
678 /*
679 * This is a per-node reserve of pages that are not available
680 * to userspace allocations.
681 */
682 unsigned long totalreserve_pages;
683
684#ifdef CONFIG_NUMA
685 /*
686 * zone reclaim becomes active if more unmapped pages exist.
687 */
688 unsigned long min_unmapped_pages;
689 unsigned long min_slab_pages;
690#endif /* CONFIG_NUMA */
691
692 /* Write-intensive fields used by page reclaim */
693 ZONE_PADDING(_pad1_)
694 spinlock_t lru_lock;
695
696#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
697 /*
698 * If memory initialisation on large machines is deferred then this
699 * is the first PFN that needs to be initialised.
700 */
701 unsigned long first_deferred_pfn;
702 unsigned long static_init_size;
703#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
704
705#ifdef CONFIG_TRANSPARENT_HUGEPAGE
706 spinlock_t split_queue_lock;
707 struct list_head split_queue;
708 unsigned long split_queue_len;
709#endif
710
711 /* Fields commonly accessed by the page reclaim scanner */
712 struct lruvec lruvec;
713
714 /*
715 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
716 * this node's LRU. Maintained by the pageout code.
717 */
718 unsigned int inactive_ratio;
719
720 unsigned long flags;
721
722 ZONE_PADDING(_pad2_)
723
724 /* Per-node vmstats */
725 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
726 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
727} pg_data_t;
728
729#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
730#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
731#ifdef CONFIG_FLAT_NODE_MEM_MAP
732#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
733#else
734#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
735#endif
736#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
737
738#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
739#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
740static inline spinlock_t *zone_lru_lock(struct zone *zone)
741{
742 return &zone->zone_pgdat->lru_lock;
743}
744
745static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
746{
747 return &pgdat->lruvec;
748}
749
750static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
751{
752 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
753}
754
755static inline bool pgdat_is_empty(pg_data_t *pgdat)
756{
757 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
758}
759
760static inline int zone_id(const struct zone *zone)
761{
762 struct pglist_data *pgdat = zone->zone_pgdat;
763
764 return zone - pgdat->node_zones;
765}
766
767#ifdef CONFIG_ZONE_DEVICE
768static inline bool is_dev_zone(const struct zone *zone)
769{
770 return zone_id(zone) == ZONE_DEVICE;
771}
772#else
773static inline bool is_dev_zone(const struct zone *zone)
774{
775 return false;
776}
777#endif
778
779#include <linux/memory_hotplug.h>
780
781void build_all_zonelists(pg_data_t *pgdat);
782void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
783bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
784 int classzone_idx, unsigned int alloc_flags,
785 long free_pages);
786bool zone_watermark_ok(struct zone *z, unsigned int order,
787 unsigned long mark, int classzone_idx,
788 unsigned int alloc_flags);
789bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
790 unsigned long mark, int classzone_idx);
791enum memmap_context {
792 MEMMAP_EARLY,
793 MEMMAP_HOTPLUG,
794};
795extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
796 unsigned long size);
797
798extern void lruvec_init(struct lruvec *lruvec);
799
800static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
801{
802#ifdef CONFIG_MEMCG
803 return lruvec->pgdat;
804#else
805 return container_of(lruvec, struct pglist_data, lruvec);
806#endif
807}
808
809extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
810
811#ifdef CONFIG_HAVE_MEMORY_PRESENT
812void memory_present(int nid, unsigned long start, unsigned long end);
813#else
814static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
815#endif
816
817#ifdef CONFIG_HAVE_MEMORYLESS_NODES
818int local_memory_node(int node_id);
819#else
820static inline int local_memory_node(int node_id) { return node_id; };
821#endif
822
823#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
824unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
825#endif
826
827/*
828 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
829 */
830#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
831
832/*
833 * Returns true if a zone has pages managed by the buddy allocator.
834 * All the reclaim decisions have to use this function rather than
835 * populated_zone(). If the whole zone is reserved then we can easily
836 * end up with populated_zone() && !managed_zone().
837 */
838static inline bool managed_zone(struct zone *zone)
839{
840 return zone->managed_pages;
841}
842
843/* Returns true if a zone has memory */
844static inline bool populated_zone(struct zone *zone)
845{
846 return zone->present_pages;
847}
848
849extern int movable_zone;
850
851#ifdef CONFIG_HIGHMEM
852static inline int zone_movable_is_highmem(void)
853{
854#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
855 return movable_zone == ZONE_HIGHMEM;
856#else
857 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
858#endif
859}
860#endif
861
862static inline int is_highmem_idx(enum zone_type idx)
863{
864#ifdef CONFIG_HIGHMEM
865 return (idx == ZONE_HIGHMEM ||
866 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
867#else
868 return 0;
869#endif
870}
871
872/**
873 * is_highmem - helper function to quickly check if a struct zone is a
874 * highmem zone or not. This is an attempt to keep references
875 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
876 * @zone - pointer to struct zone variable
877 */
878static inline int is_highmem(struct zone *zone)
879{
880#ifdef CONFIG_HIGHMEM
881 return is_highmem_idx(zone_idx(zone));
882#else
883 return 0;
884#endif
885}
886
887/* These two functions are used to setup the per zone pages min values */
888struct ctl_table;
889int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
890 void __user *, size_t *, loff_t *);
891int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
892 void __user *, size_t *, loff_t *);
893extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
894int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
895 void __user *, size_t *, loff_t *);
896int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
897 void __user *, size_t *, loff_t *);
898int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
899 void __user *, size_t *, loff_t *);
900int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
901 void __user *, size_t *, loff_t *);
902
903extern int numa_zonelist_order_handler(struct ctl_table *, int,
904 void __user *, size_t *, loff_t *);
905extern char numa_zonelist_order[];
906#define NUMA_ZONELIST_ORDER_LEN 16
907
908#ifndef CONFIG_NEED_MULTIPLE_NODES
909
910extern struct pglist_data contig_page_data;
911#define NODE_DATA(nid) (&contig_page_data)
912#define NODE_MEM_MAP(nid) mem_map
913
914#else /* CONFIG_NEED_MULTIPLE_NODES */
915
916#include <asm/mmzone.h>
917
918#endif /* !CONFIG_NEED_MULTIPLE_NODES */
919
920extern struct pglist_data *first_online_pgdat(void);
921extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
922extern struct zone *next_zone(struct zone *zone);
923
924/**
925 * for_each_online_pgdat - helper macro to iterate over all online nodes
926 * @pgdat - pointer to a pg_data_t variable
927 */
928#define for_each_online_pgdat(pgdat) \
929 for (pgdat = first_online_pgdat(); \
930 pgdat; \
931 pgdat = next_online_pgdat(pgdat))
932/**
933 * for_each_zone - helper macro to iterate over all memory zones
934 * @zone - pointer to struct zone variable
935 *
936 * The user only needs to declare the zone variable, for_each_zone
937 * fills it in.
938 */
939#define for_each_zone(zone) \
940 for (zone = (first_online_pgdat())->node_zones; \
941 zone; \
942 zone = next_zone(zone))
943
944#define for_each_populated_zone(zone) \
945 for (zone = (first_online_pgdat())->node_zones; \
946 zone; \
947 zone = next_zone(zone)) \
948 if (!populated_zone(zone)) \
949 ; /* do nothing */ \
950 else
951
952static inline struct zone *zonelist_zone(struct zoneref *zoneref)
953{
954 return zoneref->zone;
955}
956
957static inline int zonelist_zone_idx(struct zoneref *zoneref)
958{
959 return zoneref->zone_idx;
960}
961
962static inline int zonelist_node_idx(struct zoneref *zoneref)
963{
964#ifdef CONFIG_NUMA
965 /* zone_to_nid not available in this context */
966 return zoneref->zone->node;
967#else
968 return 0;
969#endif /* CONFIG_NUMA */
970}
971
972struct zoneref *__next_zones_zonelist(struct zoneref *z,
973 enum zone_type highest_zoneidx,
974 nodemask_t *nodes);
975
976/**
977 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
978 * @z - The cursor used as a starting point for the search
979 * @highest_zoneidx - The zone index of the highest zone to return
980 * @nodes - An optional nodemask to filter the zonelist with
981 *
982 * This function returns the next zone at or below a given zone index that is
983 * within the allowed nodemask using a cursor as the starting point for the
984 * search. The zoneref returned is a cursor that represents the current zone
985 * being examined. It should be advanced by one before calling
986 * next_zones_zonelist again.
987 */
988static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
989 enum zone_type highest_zoneidx,
990 nodemask_t *nodes)
991{
992 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
993 return z;
994 return __next_zones_zonelist(z, highest_zoneidx, nodes);
995}
996
997/**
998 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
999 * @zonelist - The zonelist to search for a suitable zone
1000 * @highest_zoneidx - The zone index of the highest zone to return
1001 * @nodes - An optional nodemask to filter the zonelist with
1002 * @return - Zoneref pointer for the first suitable zone found (see below)
1003 *
1004 * This function returns the first zone at or below a given zone index that is
1005 * within the allowed nodemask. The zoneref returned is a cursor that can be
1006 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1007 * one before calling.
1008 *
1009 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1010 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1011 * update due to cpuset modification.
1012 */
1013static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1014 enum zone_type highest_zoneidx,
1015 nodemask_t *nodes)
1016{
1017 return next_zones_zonelist(zonelist->_zonerefs,
1018 highest_zoneidx, nodes);
1019}
1020
1021/**
1022 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1023 * @zone - The current zone in the iterator
1024 * @z - The current pointer within zonelist->zones being iterated
1025 * @zlist - The zonelist being iterated
1026 * @highidx - The zone index of the highest zone to return
1027 * @nodemask - Nodemask allowed by the allocator
1028 *
1029 * This iterator iterates though all zones at or below a given zone index and
1030 * within a given nodemask
1031 */
1032#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1033 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1034 zone; \
1035 z = next_zones_zonelist(++z, highidx, nodemask), \
1036 zone = zonelist_zone(z))
1037
1038#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1039 for (zone = z->zone; \
1040 zone; \
1041 z = next_zones_zonelist(++z, highidx, nodemask), \
1042 zone = zonelist_zone(z))
1043
1044
1045/**
1046 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1047 * @zone - The current zone in the iterator
1048 * @z - The current pointer within zonelist->zones being iterated
1049 * @zlist - The zonelist being iterated
1050 * @highidx - The zone index of the highest zone to return
1051 *
1052 * This iterator iterates though all zones at or below a given zone index.
1053 */
1054#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1055 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1056
1057#ifdef CONFIG_SPARSEMEM
1058#include <asm/sparsemem.h>
1059#endif
1060
1061#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1062 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1063static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1064{
1065 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1066 return 0;
1067}
1068#endif
1069
1070#ifdef CONFIG_FLATMEM
1071#define pfn_to_nid(pfn) (0)
1072#endif
1073
1074#ifdef CONFIG_SPARSEMEM
1075
1076/*
1077 * SECTION_SHIFT #bits space required to store a section #
1078 *
1079 * PA_SECTION_SHIFT physical address to/from section number
1080 * PFN_SECTION_SHIFT pfn to/from section number
1081 */
1082#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1083#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1084
1085#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1086
1087#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1088#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1089
1090#define SECTION_BLOCKFLAGS_BITS \
1091 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1092
1093#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1094#error Allocator MAX_ORDER exceeds SECTION_SIZE
1095#endif
1096
1097#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1098#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1099
1100#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1101#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1102
1103struct page;
1104struct page_ext;
1105struct mem_section {
1106 /*
1107 * This is, logically, a pointer to an array of struct
1108 * pages. However, it is stored with some other magic.
1109 * (see sparse.c::sparse_init_one_section())
1110 *
1111 * Additionally during early boot we encode node id of
1112 * the location of the section here to guide allocation.
1113 * (see sparse.c::memory_present())
1114 *
1115 * Making it a UL at least makes someone do a cast
1116 * before using it wrong.
1117 */
1118 unsigned long section_mem_map;
1119
1120 /* See declaration of similar field in struct zone */
1121 unsigned long *pageblock_flags;
1122#ifdef CONFIG_PAGE_EXTENSION
1123 /*
1124 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1125 * section. (see page_ext.h about this.)
1126 */
1127 struct page_ext *page_ext;
1128 unsigned long pad;
1129#endif
1130 /*
1131 * WARNING: mem_section must be a power-of-2 in size for the
1132 * calculation and use of SECTION_ROOT_MASK to make sense.
1133 */
1134};
1135
1136#ifdef CONFIG_SPARSEMEM_EXTREME
1137#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1138#else
1139#define SECTIONS_PER_ROOT 1
1140#endif
1141
1142#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1143#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1144#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1145
1146#ifdef CONFIG_SPARSEMEM_EXTREME
1147extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1148#else
1149extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1150#endif
1151
1152static inline struct mem_section *__nr_to_section(unsigned long nr)
1153{
1154 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1155 return NULL;
1156 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1157}
1158extern int __section_nr(struct mem_section* ms);
1159extern unsigned long usemap_size(void);
1160
1161/*
1162 * We use the lower bits of the mem_map pointer to store
1163 * a little bit of information. There should be at least
1164 * 3 bits here due to 32-bit alignment.
1165 */
1166#define SECTION_MARKED_PRESENT (1UL<<0)
1167#define SECTION_HAS_MEM_MAP (1UL<<1)
1168#define SECTION_IS_ONLINE (1UL<<2)
1169#define SECTION_MAP_LAST_BIT (1UL<<3)
1170#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1171#define SECTION_NID_SHIFT 3
1172
1173static inline struct page *__section_mem_map_addr(struct mem_section *section)
1174{
1175 unsigned long map = section->section_mem_map;
1176 map &= SECTION_MAP_MASK;
1177 return (struct page *)map;
1178}
1179
1180static inline int present_section(struct mem_section *section)
1181{
1182 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1183}
1184
1185static inline int present_section_nr(unsigned long nr)
1186{
1187 return present_section(__nr_to_section(nr));
1188}
1189
1190static inline int valid_section(struct mem_section *section)
1191{
1192 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1193}
1194
1195static inline int valid_section_nr(unsigned long nr)
1196{
1197 return valid_section(__nr_to_section(nr));
1198}
1199
1200static inline int online_section(struct mem_section *section)
1201{
1202 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1203}
1204
1205static inline int online_section_nr(unsigned long nr)
1206{
1207 return online_section(__nr_to_section(nr));
1208}
1209
1210#ifdef CONFIG_MEMORY_HOTPLUG
1211void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1212#ifdef CONFIG_MEMORY_HOTREMOVE
1213void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1214#endif
1215#endif
1216
1217static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1218{
1219 return __nr_to_section(pfn_to_section_nr(pfn));
1220}
1221
1222extern int __highest_present_section_nr;
1223
1224#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1225static inline int pfn_valid(unsigned long pfn)
1226{
1227 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1228 return 0;
1229 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1230}
1231#endif
1232
1233static inline int pfn_present(unsigned long pfn)
1234{
1235 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1236 return 0;
1237 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1238}
1239
1240/*
1241 * These are _only_ used during initialisation, therefore they
1242 * can use __initdata ... They could have names to indicate
1243 * this restriction.
1244 */
1245#ifdef CONFIG_NUMA
1246#define pfn_to_nid(pfn) \
1247({ \
1248 unsigned long __pfn_to_nid_pfn = (pfn); \
1249 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1250})
1251#else
1252#define pfn_to_nid(pfn) (0)
1253#endif
1254
1255#define early_pfn_valid(pfn) pfn_valid(pfn)
1256void sparse_init(void);
1257#else
1258#define sparse_init() do {} while (0)
1259#define sparse_index_init(_sec, _nid) do {} while (0)
1260#endif /* CONFIG_SPARSEMEM */
1261
1262/*
1263 * During memory init memblocks map pfns to nids. The search is expensive and
1264 * this caches recent lookups. The implementation of __early_pfn_to_nid
1265 * may treat start/end as pfns or sections.
1266 */
1267struct mminit_pfnnid_cache {
1268 unsigned long last_start;
1269 unsigned long last_end;
1270 int last_nid;
1271};
1272
1273#ifndef early_pfn_valid
1274#define early_pfn_valid(pfn) (1)
1275#endif
1276
1277void memory_present(int nid, unsigned long start, unsigned long end);
1278unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1279
1280/*
1281 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1282 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1283 * pfn_valid_within() should be used in this case; we optimise this away
1284 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1285 */
1286#ifdef CONFIG_HOLES_IN_ZONE
1287#define pfn_valid_within(pfn) pfn_valid(pfn)
1288#else
1289#define pfn_valid_within(pfn) (1)
1290#endif
1291
1292#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1293/*
1294 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1295 * associated with it or not. This means that a struct page exists for this
1296 * pfn. The caller cannot assume the page is fully initialized in general.
1297 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1298 * will ensure the struct page is fully online and initialized. Special pages
1299 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1300 *
1301 * In FLATMEM, it is expected that holes always have valid memmap as long as
1302 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1303 * that a valid section has a memmap for the entire section.
1304 *
1305 * However, an ARM, and maybe other embedded architectures in the future
1306 * free memmap backing holes to save memory on the assumption the memmap is
1307 * never used. The page_zone linkages are then broken even though pfn_valid()
1308 * returns true. A walker of the full memmap must then do this additional
1309 * check to ensure the memmap they are looking at is sane by making sure
1310 * the zone and PFN linkages are still valid. This is expensive, but walkers
1311 * of the full memmap are extremely rare.
1312 */
1313bool memmap_valid_within(unsigned long pfn,
1314 struct page *page, struct zone *zone);
1315#else
1316static inline bool memmap_valid_within(unsigned long pfn,
1317 struct page *page, struct zone *zone)
1318{
1319 return true;
1320}
1321#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1322
1323#endif /* !__GENERATING_BOUNDS.H */
1324#endif /* !__ASSEMBLY__ */
1325#endif /* _LINUX_MMZONE_H */