Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef __KVM_HOST_H
2#define __KVM_HOST_H
3
4/*
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 */
8
9#include <linux/types.h>
10#include <linux/hardirq.h>
11#include <linux/list.h>
12#include <linux/mutex.h>
13#include <linux/spinlock.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/bug.h>
17#include <linux/mm.h>
18#include <linux/mmu_notifier.h>
19#include <linux/preempt.h>
20#include <linux/msi.h>
21#include <linux/slab.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/swait.h>
29#include <linux/refcount.h>
30#include <asm/signal.h>
31
32#include <linux/kvm.h>
33#include <linux/kvm_para.h>
34
35#include <linux/kvm_types.h>
36
37#include <asm/kvm_host.h>
38
39#ifndef KVM_MAX_VCPU_ID
40#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
41#endif
42
43/*
44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
45 * in kvm, other bits are visible for userspace which are defined in
46 * include/linux/kvm_h.
47 */
48#define KVM_MEMSLOT_INVALID (1UL << 16)
49
50/* Two fragments for cross MMIO pages. */
51#define KVM_MAX_MMIO_FRAGMENTS 2
52
53#ifndef KVM_ADDRESS_SPACE_NUM
54#define KVM_ADDRESS_SPACE_NUM 1
55#endif
56
57/*
58 * For the normal pfn, the highest 12 bits should be zero,
59 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
60 * mask bit 63 to indicate the noslot pfn.
61 */
62#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
63#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
64#define KVM_PFN_NOSLOT (0x1ULL << 63)
65
66#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
67#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
68#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
69
70/*
71 * error pfns indicate that the gfn is in slot but faild to
72 * translate it to pfn on host.
73 */
74static inline bool is_error_pfn(kvm_pfn_t pfn)
75{
76 return !!(pfn & KVM_PFN_ERR_MASK);
77}
78
79/*
80 * error_noslot pfns indicate that the gfn can not be
81 * translated to pfn - it is not in slot or failed to
82 * translate it to pfn.
83 */
84static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
85{
86 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
87}
88
89/* noslot pfn indicates that the gfn is not in slot. */
90static inline bool is_noslot_pfn(kvm_pfn_t pfn)
91{
92 return pfn == KVM_PFN_NOSLOT;
93}
94
95/*
96 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
97 * provide own defines and kvm_is_error_hva
98 */
99#ifndef KVM_HVA_ERR_BAD
100
101#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
102#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
103
104static inline bool kvm_is_error_hva(unsigned long addr)
105{
106 return addr >= PAGE_OFFSET;
107}
108
109#endif
110
111#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
112
113static inline bool is_error_page(struct page *page)
114{
115 return IS_ERR(page);
116}
117
118#define KVM_REQUEST_MASK GENMASK(7,0)
119#define KVM_REQUEST_NO_WAKEUP BIT(8)
120#define KVM_REQUEST_WAIT BIT(9)
121/*
122 * Architecture-independent vcpu->requests bit members
123 * Bits 4-7 are reserved for more arch-independent bits.
124 */
125#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
127#define KVM_REQ_PENDING_TIMER 2
128#define KVM_REQ_UNHALT 3
129#define KVM_REQUEST_ARCH_BASE 8
130
131#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
132 BUILD_BUG_ON((unsigned)(nr) >= 32 - KVM_REQUEST_ARCH_BASE); \
133 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
134})
135#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
136
137#define KVM_USERSPACE_IRQ_SOURCE_ID 0
138#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
139
140extern struct kmem_cache *kvm_vcpu_cache;
141
142extern spinlock_t kvm_lock;
143extern struct list_head vm_list;
144
145struct kvm_io_range {
146 gpa_t addr;
147 int len;
148 struct kvm_io_device *dev;
149};
150
151#define NR_IOBUS_DEVS 1000
152
153struct kvm_io_bus {
154 int dev_count;
155 int ioeventfd_count;
156 struct kvm_io_range range[];
157};
158
159enum kvm_bus {
160 KVM_MMIO_BUS,
161 KVM_PIO_BUS,
162 KVM_VIRTIO_CCW_NOTIFY_BUS,
163 KVM_FAST_MMIO_BUS,
164 KVM_NR_BUSES
165};
166
167int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
168 int len, const void *val);
169int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
170 gpa_t addr, int len, const void *val, long cookie);
171int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
172 int len, void *val);
173int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
174 int len, struct kvm_io_device *dev);
175void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
176 struct kvm_io_device *dev);
177struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
178 gpa_t addr);
179
180#ifdef CONFIG_KVM_ASYNC_PF
181struct kvm_async_pf {
182 struct work_struct work;
183 struct list_head link;
184 struct list_head queue;
185 struct kvm_vcpu *vcpu;
186 struct mm_struct *mm;
187 gva_t gva;
188 unsigned long addr;
189 struct kvm_arch_async_pf arch;
190 bool wakeup_all;
191};
192
193void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
194void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
195int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
196 struct kvm_arch_async_pf *arch);
197int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
198#endif
199
200enum {
201 OUTSIDE_GUEST_MODE,
202 IN_GUEST_MODE,
203 EXITING_GUEST_MODE,
204 READING_SHADOW_PAGE_TABLES,
205};
206
207/*
208 * Sometimes a large or cross-page mmio needs to be broken up into separate
209 * exits for userspace servicing.
210 */
211struct kvm_mmio_fragment {
212 gpa_t gpa;
213 void *data;
214 unsigned len;
215};
216
217struct kvm_vcpu {
218 struct kvm *kvm;
219#ifdef CONFIG_PREEMPT_NOTIFIERS
220 struct preempt_notifier preempt_notifier;
221#endif
222 int cpu;
223 int vcpu_id;
224 int srcu_idx;
225 int mode;
226 unsigned long requests;
227 unsigned long guest_debug;
228
229 int pre_pcpu;
230 struct list_head blocked_vcpu_list;
231
232 struct mutex mutex;
233 struct kvm_run *run;
234
235 int guest_fpu_loaded, guest_xcr0_loaded;
236 struct swait_queue_head wq;
237 struct pid __rcu *pid;
238 int sigset_active;
239 sigset_t sigset;
240 struct kvm_vcpu_stat stat;
241 unsigned int halt_poll_ns;
242 bool valid_wakeup;
243
244#ifdef CONFIG_HAS_IOMEM
245 int mmio_needed;
246 int mmio_read_completed;
247 int mmio_is_write;
248 int mmio_cur_fragment;
249 int mmio_nr_fragments;
250 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
251#endif
252
253#ifdef CONFIG_KVM_ASYNC_PF
254 struct {
255 u32 queued;
256 struct list_head queue;
257 struct list_head done;
258 spinlock_t lock;
259 } async_pf;
260#endif
261
262#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
263 /*
264 * Cpu relax intercept or pause loop exit optimization
265 * in_spin_loop: set when a vcpu does a pause loop exit
266 * or cpu relax intercepted.
267 * dy_eligible: indicates whether vcpu is eligible for directed yield.
268 */
269 struct {
270 bool in_spin_loop;
271 bool dy_eligible;
272 } spin_loop;
273#endif
274 bool preempted;
275 struct kvm_vcpu_arch arch;
276 struct dentry *debugfs_dentry;
277};
278
279static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
280{
281 /*
282 * The memory barrier ensures a previous write to vcpu->requests cannot
283 * be reordered with the read of vcpu->mode. It pairs with the general
284 * memory barrier following the write of vcpu->mode in VCPU RUN.
285 */
286 smp_mb__before_atomic();
287 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
288}
289
290/*
291 * Some of the bitops functions do not support too long bitmaps.
292 * This number must be determined not to exceed such limits.
293 */
294#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
295
296struct kvm_memory_slot {
297 gfn_t base_gfn;
298 unsigned long npages;
299 unsigned long *dirty_bitmap;
300 struct kvm_arch_memory_slot arch;
301 unsigned long userspace_addr;
302 u32 flags;
303 short id;
304};
305
306static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
307{
308 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
309}
310
311struct kvm_s390_adapter_int {
312 u64 ind_addr;
313 u64 summary_addr;
314 u64 ind_offset;
315 u32 summary_offset;
316 u32 adapter_id;
317};
318
319struct kvm_hv_sint {
320 u32 vcpu;
321 u32 sint;
322};
323
324struct kvm_kernel_irq_routing_entry {
325 u32 gsi;
326 u32 type;
327 int (*set)(struct kvm_kernel_irq_routing_entry *e,
328 struct kvm *kvm, int irq_source_id, int level,
329 bool line_status);
330 union {
331 struct {
332 unsigned irqchip;
333 unsigned pin;
334 } irqchip;
335 struct {
336 u32 address_lo;
337 u32 address_hi;
338 u32 data;
339 u32 flags;
340 u32 devid;
341 } msi;
342 struct kvm_s390_adapter_int adapter;
343 struct kvm_hv_sint hv_sint;
344 };
345 struct hlist_node link;
346};
347
348#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
349struct kvm_irq_routing_table {
350 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
351 u32 nr_rt_entries;
352 /*
353 * Array indexed by gsi. Each entry contains list of irq chips
354 * the gsi is connected to.
355 */
356 struct hlist_head map[0];
357};
358#endif
359
360#ifndef KVM_PRIVATE_MEM_SLOTS
361#define KVM_PRIVATE_MEM_SLOTS 0
362#endif
363
364#ifndef KVM_MEM_SLOTS_NUM
365#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
366#endif
367
368#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
369static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
370{
371 return 0;
372}
373#endif
374
375/*
376 * Note:
377 * memslots are not sorted by id anymore, please use id_to_memslot()
378 * to get the memslot by its id.
379 */
380struct kvm_memslots {
381 u64 generation;
382 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
383 /* The mapping table from slot id to the index in memslots[]. */
384 short id_to_index[KVM_MEM_SLOTS_NUM];
385 atomic_t lru_slot;
386 int used_slots;
387};
388
389struct kvm {
390 spinlock_t mmu_lock;
391 struct mutex slots_lock;
392 struct mm_struct *mm; /* userspace tied to this vm */
393 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
394 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
395
396 /*
397 * created_vcpus is protected by kvm->lock, and is incremented
398 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
399 * incremented after storing the kvm_vcpu pointer in vcpus,
400 * and is accessed atomically.
401 */
402 atomic_t online_vcpus;
403 int created_vcpus;
404 int last_boosted_vcpu;
405 struct list_head vm_list;
406 struct mutex lock;
407 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
408#ifdef CONFIG_HAVE_KVM_EVENTFD
409 struct {
410 spinlock_t lock;
411 struct list_head items;
412 struct list_head resampler_list;
413 struct mutex resampler_lock;
414 } irqfds;
415 struct list_head ioeventfds;
416#endif
417 struct kvm_vm_stat stat;
418 struct kvm_arch arch;
419 refcount_t users_count;
420#ifdef CONFIG_KVM_MMIO
421 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
422 spinlock_t ring_lock;
423 struct list_head coalesced_zones;
424#endif
425
426 struct mutex irq_lock;
427#ifdef CONFIG_HAVE_KVM_IRQCHIP
428 /*
429 * Update side is protected by irq_lock.
430 */
431 struct kvm_irq_routing_table __rcu *irq_routing;
432#endif
433#ifdef CONFIG_HAVE_KVM_IRQFD
434 struct hlist_head irq_ack_notifier_list;
435#endif
436
437#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 struct mmu_notifier mmu_notifier;
439 unsigned long mmu_notifier_seq;
440 long mmu_notifier_count;
441#endif
442 long tlbs_dirty;
443 struct list_head devices;
444 struct dentry *debugfs_dentry;
445 struct kvm_stat_data **debugfs_stat_data;
446 struct srcu_struct srcu;
447 struct srcu_struct irq_srcu;
448 pid_t userspace_pid;
449};
450
451#define kvm_err(fmt, ...) \
452 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
453#define kvm_info(fmt, ...) \
454 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
455#define kvm_debug(fmt, ...) \
456 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
457#define kvm_debug_ratelimited(fmt, ...) \
458 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
459 ## __VA_ARGS__)
460#define kvm_pr_unimpl(fmt, ...) \
461 pr_err_ratelimited("kvm [%i]: " fmt, \
462 task_tgid_nr(current), ## __VA_ARGS__)
463
464/* The guest did something we don't support. */
465#define vcpu_unimpl(vcpu, fmt, ...) \
466 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
467 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
468
469#define vcpu_debug(vcpu, fmt, ...) \
470 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
471#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
472 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
473 ## __VA_ARGS__)
474#define vcpu_err(vcpu, fmt, ...) \
475 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
476
477static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
478{
479 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
480 lockdep_is_held(&kvm->slots_lock) ||
481 !refcount_read(&kvm->users_count));
482}
483
484static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
485{
486 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case
487 * the caller has read kvm->online_vcpus before (as is the case
488 * for kvm_for_each_vcpu, for example).
489 */
490 smp_rmb();
491 return kvm->vcpus[i];
492}
493
494#define kvm_for_each_vcpu(idx, vcpup, kvm) \
495 for (idx = 0; \
496 idx < atomic_read(&kvm->online_vcpus) && \
497 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
498 idx++)
499
500static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
501{
502 struct kvm_vcpu *vcpu = NULL;
503 int i;
504
505 if (id < 0)
506 return NULL;
507 if (id < KVM_MAX_VCPUS)
508 vcpu = kvm_get_vcpu(kvm, id);
509 if (vcpu && vcpu->vcpu_id == id)
510 return vcpu;
511 kvm_for_each_vcpu(i, vcpu, kvm)
512 if (vcpu->vcpu_id == id)
513 return vcpu;
514 return NULL;
515}
516
517static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
518{
519 struct kvm_vcpu *tmp;
520 int idx;
521
522 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
523 if (tmp == vcpu)
524 return idx;
525 BUG();
526}
527
528#define kvm_for_each_memslot(memslot, slots) \
529 for (memslot = &slots->memslots[0]; \
530 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
531 memslot++)
532
533int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
534void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
535
536int __must_check vcpu_load(struct kvm_vcpu *vcpu);
537void vcpu_put(struct kvm_vcpu *vcpu);
538
539#ifdef __KVM_HAVE_IOAPIC
540void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
541void kvm_arch_post_irq_routing_update(struct kvm *kvm);
542#else
543static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
544{
545}
546static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
547{
548}
549#endif
550
551#ifdef CONFIG_HAVE_KVM_IRQFD
552int kvm_irqfd_init(void);
553void kvm_irqfd_exit(void);
554#else
555static inline int kvm_irqfd_init(void)
556{
557 return 0;
558}
559
560static inline void kvm_irqfd_exit(void)
561{
562}
563#endif
564int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
565 struct module *module);
566void kvm_exit(void);
567
568void kvm_get_kvm(struct kvm *kvm);
569void kvm_put_kvm(struct kvm *kvm);
570
571static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
572{
573 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
574 lockdep_is_held(&kvm->slots_lock) ||
575 !refcount_read(&kvm->users_count));
576}
577
578static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
579{
580 return __kvm_memslots(kvm, 0);
581}
582
583static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
584{
585 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
586
587 return __kvm_memslots(vcpu->kvm, as_id);
588}
589
590static inline struct kvm_memory_slot *
591id_to_memslot(struct kvm_memslots *slots, int id)
592{
593 int index = slots->id_to_index[id];
594 struct kvm_memory_slot *slot;
595
596 slot = &slots->memslots[index];
597
598 WARN_ON(slot->id != id);
599 return slot;
600}
601
602/*
603 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
604 * - create a new memory slot
605 * - delete an existing memory slot
606 * - modify an existing memory slot
607 * -- move it in the guest physical memory space
608 * -- just change its flags
609 *
610 * Since flags can be changed by some of these operations, the following
611 * differentiation is the best we can do for __kvm_set_memory_region():
612 */
613enum kvm_mr_change {
614 KVM_MR_CREATE,
615 KVM_MR_DELETE,
616 KVM_MR_MOVE,
617 KVM_MR_FLAGS_ONLY,
618};
619
620int kvm_set_memory_region(struct kvm *kvm,
621 const struct kvm_userspace_memory_region *mem);
622int __kvm_set_memory_region(struct kvm *kvm,
623 const struct kvm_userspace_memory_region *mem);
624void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
625 struct kvm_memory_slot *dont);
626int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
627 unsigned long npages);
628void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots);
629int kvm_arch_prepare_memory_region(struct kvm *kvm,
630 struct kvm_memory_slot *memslot,
631 const struct kvm_userspace_memory_region *mem,
632 enum kvm_mr_change change);
633void kvm_arch_commit_memory_region(struct kvm *kvm,
634 const struct kvm_userspace_memory_region *mem,
635 const struct kvm_memory_slot *old,
636 const struct kvm_memory_slot *new,
637 enum kvm_mr_change change);
638bool kvm_largepages_enabled(void);
639void kvm_disable_largepages(void);
640/* flush all memory translations */
641void kvm_arch_flush_shadow_all(struct kvm *kvm);
642/* flush memory translations pointing to 'slot' */
643void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
644 struct kvm_memory_slot *slot);
645
646int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
647 struct page **pages, int nr_pages);
648
649struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
650unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
651unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
652unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
653unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
654 bool *writable);
655void kvm_release_page_clean(struct page *page);
656void kvm_release_page_dirty(struct page *page);
657void kvm_set_page_accessed(struct page *page);
658
659kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
660kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
661kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
662 bool *writable);
663kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
664kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
665kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
666 bool atomic, bool *async, bool write_fault,
667 bool *writable);
668
669void kvm_release_pfn_clean(kvm_pfn_t pfn);
670void kvm_release_pfn_dirty(kvm_pfn_t pfn);
671void kvm_set_pfn_dirty(kvm_pfn_t pfn);
672void kvm_set_pfn_accessed(kvm_pfn_t pfn);
673void kvm_get_pfn(kvm_pfn_t pfn);
674
675int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
676 int len);
677int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
678 unsigned long len);
679int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
680int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
681 void *data, unsigned long len);
682int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
683 int offset, int len);
684int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
685 unsigned long len);
686int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
687 void *data, unsigned long len);
688int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
689 void *data, int offset, unsigned long len);
690int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
691 gpa_t gpa, unsigned long len);
692int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
693int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
694struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
695bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
696unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
697void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
698
699struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
700struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
701kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
702kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
703struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
704unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
705unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
706int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
707 int len);
708int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
709 unsigned long len);
710int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
711 unsigned long len);
712int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
713 int offset, int len);
714int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
715 unsigned long len);
716void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
717
718void kvm_vcpu_block(struct kvm_vcpu *vcpu);
719void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
720void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
721bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
722void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
723int kvm_vcpu_yield_to(struct kvm_vcpu *target);
724void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
725void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
726void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
727
728void kvm_flush_remote_tlbs(struct kvm *kvm);
729void kvm_reload_remote_mmus(struct kvm *kvm);
730bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
731
732long kvm_arch_dev_ioctl(struct file *filp,
733 unsigned int ioctl, unsigned long arg);
734long kvm_arch_vcpu_ioctl(struct file *filp,
735 unsigned int ioctl, unsigned long arg);
736int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
737
738int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
739
740int kvm_get_dirty_log(struct kvm *kvm,
741 struct kvm_dirty_log *log, int *is_dirty);
742
743int kvm_get_dirty_log_protect(struct kvm *kvm,
744 struct kvm_dirty_log *log, bool *is_dirty);
745
746void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
747 struct kvm_memory_slot *slot,
748 gfn_t gfn_offset,
749 unsigned long mask);
750
751int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
752 struct kvm_dirty_log *log);
753
754int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
755 bool line_status);
756long kvm_arch_vm_ioctl(struct file *filp,
757 unsigned int ioctl, unsigned long arg);
758
759int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
760int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
761
762int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
763 struct kvm_translation *tr);
764
765int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
766int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
767int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
768 struct kvm_sregs *sregs);
769int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
770 struct kvm_sregs *sregs);
771int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
772 struct kvm_mp_state *mp_state);
773int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
774 struct kvm_mp_state *mp_state);
775int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
776 struct kvm_guest_debug *dbg);
777int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
778
779int kvm_arch_init(void *opaque);
780void kvm_arch_exit(void);
781
782int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
783void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
784
785void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
786
787void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
788void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
789void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
790struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
791int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
792void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
793void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
794
795bool kvm_arch_has_vcpu_debugfs(void);
796int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
797
798int kvm_arch_hardware_enable(void);
799void kvm_arch_hardware_disable(void);
800int kvm_arch_hardware_setup(void);
801void kvm_arch_hardware_unsetup(void);
802void kvm_arch_check_processor_compat(void *rtn);
803int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
804bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
805int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
806
807#ifndef __KVM_HAVE_ARCH_VM_ALLOC
808static inline struct kvm *kvm_arch_alloc_vm(void)
809{
810 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
811}
812
813static inline void kvm_arch_free_vm(struct kvm *kvm)
814{
815 kfree(kvm);
816}
817#endif
818
819#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
820void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
821void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
822bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
823#else
824static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
825{
826}
827
828static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
829{
830}
831
832static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
833{
834 return false;
835}
836#endif
837#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
838void kvm_arch_start_assignment(struct kvm *kvm);
839void kvm_arch_end_assignment(struct kvm *kvm);
840bool kvm_arch_has_assigned_device(struct kvm *kvm);
841#else
842static inline void kvm_arch_start_assignment(struct kvm *kvm)
843{
844}
845
846static inline void kvm_arch_end_assignment(struct kvm *kvm)
847{
848}
849
850static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
851{
852 return false;
853}
854#endif
855
856static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
857{
858#ifdef __KVM_HAVE_ARCH_WQP
859 return vcpu->arch.wqp;
860#else
861 return &vcpu->wq;
862#endif
863}
864
865#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
866/*
867 * returns true if the virtual interrupt controller is initialized and
868 * ready to accept virtual IRQ. On some architectures the virtual interrupt
869 * controller is dynamically instantiated and this is not always true.
870 */
871bool kvm_arch_intc_initialized(struct kvm *kvm);
872#else
873static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
874{
875 return true;
876}
877#endif
878
879int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
880void kvm_arch_destroy_vm(struct kvm *kvm);
881void kvm_arch_sync_events(struct kvm *kvm);
882
883int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
884void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
885
886bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
887
888struct kvm_irq_ack_notifier {
889 struct hlist_node link;
890 unsigned gsi;
891 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
892};
893
894int kvm_irq_map_gsi(struct kvm *kvm,
895 struct kvm_kernel_irq_routing_entry *entries, int gsi);
896int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
897
898int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
899 bool line_status);
900int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
901 int irq_source_id, int level, bool line_status);
902int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
903 struct kvm *kvm, int irq_source_id,
904 int level, bool line_status);
905bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
906void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
907void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
908void kvm_register_irq_ack_notifier(struct kvm *kvm,
909 struct kvm_irq_ack_notifier *kian);
910void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
911 struct kvm_irq_ack_notifier *kian);
912int kvm_request_irq_source_id(struct kvm *kvm);
913void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
914
915/*
916 * search_memslots() and __gfn_to_memslot() are here because they are
917 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
918 * gfn_to_memslot() itself isn't here as an inline because that would
919 * bloat other code too much.
920 */
921static inline struct kvm_memory_slot *
922search_memslots(struct kvm_memslots *slots, gfn_t gfn)
923{
924 int start = 0, end = slots->used_slots;
925 int slot = atomic_read(&slots->lru_slot);
926 struct kvm_memory_slot *memslots = slots->memslots;
927
928 if (gfn >= memslots[slot].base_gfn &&
929 gfn < memslots[slot].base_gfn + memslots[slot].npages)
930 return &memslots[slot];
931
932 while (start < end) {
933 slot = start + (end - start) / 2;
934
935 if (gfn >= memslots[slot].base_gfn)
936 end = slot;
937 else
938 start = slot + 1;
939 }
940
941 if (gfn >= memslots[start].base_gfn &&
942 gfn < memslots[start].base_gfn + memslots[start].npages) {
943 atomic_set(&slots->lru_slot, start);
944 return &memslots[start];
945 }
946
947 return NULL;
948}
949
950static inline struct kvm_memory_slot *
951__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
952{
953 return search_memslots(slots, gfn);
954}
955
956static inline unsigned long
957__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
958{
959 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
960}
961
962static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
963{
964 return gfn_to_memslot(kvm, gfn)->id;
965}
966
967static inline gfn_t
968hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
969{
970 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
971
972 return slot->base_gfn + gfn_offset;
973}
974
975static inline gpa_t gfn_to_gpa(gfn_t gfn)
976{
977 return (gpa_t)gfn << PAGE_SHIFT;
978}
979
980static inline gfn_t gpa_to_gfn(gpa_t gpa)
981{
982 return (gfn_t)(gpa >> PAGE_SHIFT);
983}
984
985static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
986{
987 return (hpa_t)pfn << PAGE_SHIFT;
988}
989
990static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
991 gpa_t gpa)
992{
993 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
994}
995
996static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
997{
998 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
999
1000 return kvm_is_error_hva(hva);
1001}
1002
1003enum kvm_stat_kind {
1004 KVM_STAT_VM,
1005 KVM_STAT_VCPU,
1006};
1007
1008struct kvm_stat_data {
1009 int offset;
1010 struct kvm *kvm;
1011};
1012
1013struct kvm_stats_debugfs_item {
1014 const char *name;
1015 int offset;
1016 enum kvm_stat_kind kind;
1017};
1018extern struct kvm_stats_debugfs_item debugfs_entries[];
1019extern struct dentry *kvm_debugfs_dir;
1020
1021#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1022static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1023{
1024 if (unlikely(kvm->mmu_notifier_count))
1025 return 1;
1026 /*
1027 * Ensure the read of mmu_notifier_count happens before the read
1028 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1029 * mmu_notifier_invalidate_range_end to make sure that the caller
1030 * either sees the old (non-zero) value of mmu_notifier_count or
1031 * the new (incremented) value of mmu_notifier_seq.
1032 * PowerPC Book3s HV KVM calls this under a per-page lock
1033 * rather than under kvm->mmu_lock, for scalability, so
1034 * can't rely on kvm->mmu_lock to keep things ordered.
1035 */
1036 smp_rmb();
1037 if (kvm->mmu_notifier_seq != mmu_seq)
1038 return 1;
1039 return 0;
1040}
1041#endif
1042
1043#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1044
1045#ifdef CONFIG_S390
1046#define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that...
1047#elif defined(CONFIG_ARM64)
1048#define KVM_MAX_IRQ_ROUTES 4096
1049#else
1050#define KVM_MAX_IRQ_ROUTES 1024
1051#endif
1052
1053bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1054int kvm_set_irq_routing(struct kvm *kvm,
1055 const struct kvm_irq_routing_entry *entries,
1056 unsigned nr,
1057 unsigned flags);
1058int kvm_set_routing_entry(struct kvm *kvm,
1059 struct kvm_kernel_irq_routing_entry *e,
1060 const struct kvm_irq_routing_entry *ue);
1061void kvm_free_irq_routing(struct kvm *kvm);
1062
1063#else
1064
1065static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1066
1067#endif
1068
1069int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1070
1071#ifdef CONFIG_HAVE_KVM_EVENTFD
1072
1073void kvm_eventfd_init(struct kvm *kvm);
1074int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1075
1076#ifdef CONFIG_HAVE_KVM_IRQFD
1077int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1078void kvm_irqfd_release(struct kvm *kvm);
1079void kvm_irq_routing_update(struct kvm *);
1080#else
1081static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1082{
1083 return -EINVAL;
1084}
1085
1086static inline void kvm_irqfd_release(struct kvm *kvm) {}
1087#endif
1088
1089#else
1090
1091static inline void kvm_eventfd_init(struct kvm *kvm) {}
1092
1093static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1094{
1095 return -EINVAL;
1096}
1097
1098static inline void kvm_irqfd_release(struct kvm *kvm) {}
1099
1100#ifdef CONFIG_HAVE_KVM_IRQCHIP
1101static inline void kvm_irq_routing_update(struct kvm *kvm)
1102{
1103}
1104#endif
1105void kvm_arch_irq_routing_update(struct kvm *kvm);
1106
1107static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1108{
1109 return -ENOSYS;
1110}
1111
1112#endif /* CONFIG_HAVE_KVM_EVENTFD */
1113
1114static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1115{
1116 /*
1117 * Ensure the rest of the request is published to kvm_check_request's
1118 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1119 */
1120 smp_wmb();
1121 set_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1122}
1123
1124static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1125{
1126 return READ_ONCE(vcpu->requests);
1127}
1128
1129static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1130{
1131 return test_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1132}
1133
1134static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1135{
1136 clear_bit(req & KVM_REQUEST_MASK, &vcpu->requests);
1137}
1138
1139static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1140{
1141 if (kvm_test_request(req, vcpu)) {
1142 kvm_clear_request(req, vcpu);
1143
1144 /*
1145 * Ensure the rest of the request is visible to kvm_check_request's
1146 * caller. Paired with the smp_wmb in kvm_make_request.
1147 */
1148 smp_mb__after_atomic();
1149 return true;
1150 } else {
1151 return false;
1152 }
1153}
1154
1155extern bool kvm_rebooting;
1156
1157extern unsigned int halt_poll_ns;
1158extern unsigned int halt_poll_ns_grow;
1159extern unsigned int halt_poll_ns_shrink;
1160
1161struct kvm_device {
1162 struct kvm_device_ops *ops;
1163 struct kvm *kvm;
1164 void *private;
1165 struct list_head vm_node;
1166};
1167
1168/* create, destroy, and name are mandatory */
1169struct kvm_device_ops {
1170 const char *name;
1171
1172 /*
1173 * create is called holding kvm->lock and any operations not suitable
1174 * to do while holding the lock should be deferred to init (see
1175 * below).
1176 */
1177 int (*create)(struct kvm_device *dev, u32 type);
1178
1179 /*
1180 * init is called after create if create is successful and is called
1181 * outside of holding kvm->lock.
1182 */
1183 void (*init)(struct kvm_device *dev);
1184
1185 /*
1186 * Destroy is responsible for freeing dev.
1187 *
1188 * Destroy may be called before or after destructors are called
1189 * on emulated I/O regions, depending on whether a reference is
1190 * held by a vcpu or other kvm component that gets destroyed
1191 * after the emulated I/O.
1192 */
1193 void (*destroy)(struct kvm_device *dev);
1194
1195 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1196 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1197 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1198 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1199 unsigned long arg);
1200};
1201
1202void kvm_device_get(struct kvm_device *dev);
1203void kvm_device_put(struct kvm_device *dev);
1204struct kvm_device *kvm_device_from_filp(struct file *filp);
1205int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1206void kvm_unregister_device_ops(u32 type);
1207
1208extern struct kvm_device_ops kvm_mpic_ops;
1209extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1210extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1211
1212#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1213
1214static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1215{
1216 vcpu->spin_loop.in_spin_loop = val;
1217}
1218static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1219{
1220 vcpu->spin_loop.dy_eligible = val;
1221}
1222
1223#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1224
1225static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1226{
1227}
1228
1229static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1230{
1231}
1232#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1233
1234#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1235bool kvm_arch_has_irq_bypass(void);
1236int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1237 struct irq_bypass_producer *);
1238void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1239 struct irq_bypass_producer *);
1240void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1241void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1242int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1243 uint32_t guest_irq, bool set);
1244#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1245
1246#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1247/* If we wakeup during the poll time, was it a sucessful poll? */
1248static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1249{
1250 return vcpu->valid_wakeup;
1251}
1252
1253#else
1254static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1255{
1256 return true;
1257}
1258#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1259
1260#endif