1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21 22struct mempolicy; 23struct anon_vma; 24struct anon_vma_chain; 25struct file_ra_state; 26struct user_struct; 27struct writeback_control; 28 29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 30extern unsigned long max_mapnr; 31 32static inline void set_max_mapnr(unsigned long limit) 33{ 34 max_mapnr = limit; 35} 36#else 37static inline void set_max_mapnr(unsigned long limit) { } 38#endif 39 40extern unsigned long totalram_pages; 41extern void * high_memory; 42extern int page_cluster; 43 44#ifdef CONFIG_SYSCTL 45extern int sysctl_legacy_va_layout; 46#else 47#define sysctl_legacy_va_layout 0 48#endif 49 50#include <asm/page.h> 51#include <asm/pgtable.h> 52#include <asm/processor.h> 53 54#ifndef __pa_symbol 55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 56#endif 57 58extern unsigned long sysctl_user_reserve_kbytes; 59extern unsigned long sysctl_admin_reserve_kbytes; 60 61extern int sysctl_overcommit_memory; 62extern int sysctl_overcommit_ratio; 63extern unsigned long sysctl_overcommit_kbytes; 64 65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 66 size_t *, loff_t *); 67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 68 size_t *, loff_t *); 69 70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 71 72/* to align the pointer to the (next) page boundary */ 73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 74 75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 77 78/* 79 * Linux kernel virtual memory manager primitives. 80 * The idea being to have a "virtual" mm in the same way 81 * we have a virtual fs - giving a cleaner interface to the 82 * mm details, and allowing different kinds of memory mappings 83 * (from shared memory to executable loading to arbitrary 84 * mmap() functions). 85 */ 86 87extern struct kmem_cache *vm_area_cachep; 88 89#ifndef CONFIG_MMU 90extern struct rb_root nommu_region_tree; 91extern struct rw_semaphore nommu_region_sem; 92 93extern unsigned int kobjsize(const void *objp); 94#endif 95 96/* 97 * vm_flags in vm_area_struct, see mm_types.h. 98 */ 99#define VM_NONE 0x00000000 100 101#define VM_READ 0x00000001 /* currently active flags */ 102#define VM_WRITE 0x00000002 103#define VM_EXEC 0x00000004 104#define VM_SHARED 0x00000008 105 106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 108#define VM_MAYWRITE 0x00000020 109#define VM_MAYEXEC 0x00000040 110#define VM_MAYSHARE 0x00000080 111 112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 115 116#define VM_LOCKED 0x00002000 117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 118 119 /* Used by sys_madvise() */ 120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 122 123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 131 132#ifdef CONFIG_MEM_SOFT_DIRTY 133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 134#else 135# define VM_SOFTDIRTY 0 136#endif 137 138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 142 143#if defined(CONFIG_X86) 144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 145#elif defined(CONFIG_PPC) 146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 147#elif defined(CONFIG_PARISC) 148# define VM_GROWSUP VM_ARCH_1 149#elif defined(CONFIG_METAG) 150# define VM_GROWSUP VM_ARCH_1 151#elif defined(CONFIG_IA64) 152# define VM_GROWSUP VM_ARCH_1 153#elif !defined(CONFIG_MMU) 154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 155#endif 156 157#ifndef VM_GROWSUP 158# define VM_GROWSUP VM_NONE 159#endif 160 161/* Bits set in the VMA until the stack is in its final location */ 162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 163 164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 166#endif 167 168#ifdef CONFIG_STACK_GROWSUP 169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 170#else 171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 172#endif 173 174/* 175 * Special vmas that are non-mergable, non-mlock()able. 176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 177 */ 178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 179 180/* 181 * mapping from the currently active vm_flags protection bits (the 182 * low four bits) to a page protection mask.. 183 */ 184extern pgprot_t protection_map[16]; 185 186#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 187#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 188#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 189#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 190#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 191#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 192#define FAULT_FLAG_TRIED 0x40 /* second try */ 193#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 194 195/* 196 * vm_fault is filled by the the pagefault handler and passed to the vma's 197 * ->fault function. The vma's ->fault is responsible for returning a bitmask 198 * of VM_FAULT_xxx flags that give details about how the fault was handled. 199 * 200 * pgoff should be used in favour of virtual_address, if possible. If pgoff 201 * is used, one may implement ->remap_pages to get nonlinear mapping support. 202 */ 203struct vm_fault { 204 unsigned int flags; /* FAULT_FLAG_xxx flags */ 205 pgoff_t pgoff; /* Logical page offset based on vma */ 206 void __user *virtual_address; /* Faulting virtual address */ 207 208 struct page *page; /* ->fault handlers should return a 209 * page here, unless VM_FAULT_NOPAGE 210 * is set (which is also implied by 211 * VM_FAULT_ERROR). 212 */ 213}; 214 215/* 216 * These are the virtual MM functions - opening of an area, closing and 217 * unmapping it (needed to keep files on disk up-to-date etc), pointer 218 * to the functions called when a no-page or a wp-page exception occurs. 219 */ 220struct vm_operations_struct { 221 void (*open)(struct vm_area_struct * area); 222 void (*close)(struct vm_area_struct * area); 223 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 224 225 /* notification that a previously read-only page is about to become 226 * writable, if an error is returned it will cause a SIGBUS */ 227 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 228 229 /* called by access_process_vm when get_user_pages() fails, typically 230 * for use by special VMAs that can switch between memory and hardware 231 */ 232 int (*access)(struct vm_area_struct *vma, unsigned long addr, 233 void *buf, int len, int write); 234#ifdef CONFIG_NUMA 235 /* 236 * set_policy() op must add a reference to any non-NULL @new mempolicy 237 * to hold the policy upon return. Caller should pass NULL @new to 238 * remove a policy and fall back to surrounding context--i.e. do not 239 * install a MPOL_DEFAULT policy, nor the task or system default 240 * mempolicy. 241 */ 242 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 243 244 /* 245 * get_policy() op must add reference [mpol_get()] to any policy at 246 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 247 * in mm/mempolicy.c will do this automatically. 248 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 249 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 250 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 251 * must return NULL--i.e., do not "fallback" to task or system default 252 * policy. 253 */ 254 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 255 unsigned long addr); 256 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 257 const nodemask_t *to, unsigned long flags); 258#endif 259 /* called by sys_remap_file_pages() to populate non-linear mapping */ 260 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 261 unsigned long size, pgoff_t pgoff); 262}; 263 264struct mmu_gather; 265struct inode; 266 267#define page_private(page) ((page)->private) 268#define set_page_private(page, v) ((page)->private = (v)) 269 270/* It's valid only if the page is free path or free_list */ 271static inline void set_freepage_migratetype(struct page *page, int migratetype) 272{ 273 page->index = migratetype; 274} 275 276/* It's valid only if the page is free path or free_list */ 277static inline int get_freepage_migratetype(struct page *page) 278{ 279 return page->index; 280} 281 282/* 283 * FIXME: take this include out, include page-flags.h in 284 * files which need it (119 of them) 285 */ 286#include <linux/page-flags.h> 287#include <linux/huge_mm.h> 288 289/* 290 * Methods to modify the page usage count. 291 * 292 * What counts for a page usage: 293 * - cache mapping (page->mapping) 294 * - private data (page->private) 295 * - page mapped in a task's page tables, each mapping 296 * is counted separately 297 * 298 * Also, many kernel routines increase the page count before a critical 299 * routine so they can be sure the page doesn't go away from under them. 300 */ 301 302/* 303 * Drop a ref, return true if the refcount fell to zero (the page has no users) 304 */ 305static inline int put_page_testzero(struct page *page) 306{ 307 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 308 return atomic_dec_and_test(&page->_count); 309} 310 311/* 312 * Try to grab a ref unless the page has a refcount of zero, return false if 313 * that is the case. 314 * This can be called when MMU is off so it must not access 315 * any of the virtual mappings. 316 */ 317static inline int get_page_unless_zero(struct page *page) 318{ 319 return atomic_inc_not_zero(&page->_count); 320} 321 322/* 323 * Try to drop a ref unless the page has a refcount of one, return false if 324 * that is the case. 325 * This is to make sure that the refcount won't become zero after this drop. 326 * This can be called when MMU is off so it must not access 327 * any of the virtual mappings. 328 */ 329static inline int put_page_unless_one(struct page *page) 330{ 331 return atomic_add_unless(&page->_count, -1, 1); 332} 333 334extern int page_is_ram(unsigned long pfn); 335 336/* Support for virtually mapped pages */ 337struct page *vmalloc_to_page(const void *addr); 338unsigned long vmalloc_to_pfn(const void *addr); 339 340/* 341 * Determine if an address is within the vmalloc range 342 * 343 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 344 * is no special casing required. 345 */ 346static inline int is_vmalloc_addr(const void *x) 347{ 348#ifdef CONFIG_MMU 349 unsigned long addr = (unsigned long)x; 350 351 return addr >= VMALLOC_START && addr < VMALLOC_END; 352#else 353 return 0; 354#endif 355} 356#ifdef CONFIG_MMU 357extern int is_vmalloc_or_module_addr(const void *x); 358#else 359static inline int is_vmalloc_or_module_addr(const void *x) 360{ 361 return 0; 362} 363#endif 364 365static inline void compound_lock(struct page *page) 366{ 367#ifdef CONFIG_TRANSPARENT_HUGEPAGE 368 VM_BUG_ON_PAGE(PageSlab(page), page); 369 bit_spin_lock(PG_compound_lock, &page->flags); 370#endif 371} 372 373static inline void compound_unlock(struct page *page) 374{ 375#ifdef CONFIG_TRANSPARENT_HUGEPAGE 376 VM_BUG_ON_PAGE(PageSlab(page), page); 377 bit_spin_unlock(PG_compound_lock, &page->flags); 378#endif 379} 380 381static inline unsigned long compound_lock_irqsave(struct page *page) 382{ 383 unsigned long uninitialized_var(flags); 384#ifdef CONFIG_TRANSPARENT_HUGEPAGE 385 local_irq_save(flags); 386 compound_lock(page); 387#endif 388 return flags; 389} 390 391static inline void compound_unlock_irqrestore(struct page *page, 392 unsigned long flags) 393{ 394#ifdef CONFIG_TRANSPARENT_HUGEPAGE 395 compound_unlock(page); 396 local_irq_restore(flags); 397#endif 398} 399 400static inline struct page *compound_head(struct page *page) 401{ 402 if (unlikely(PageTail(page))) 403 return page->first_page; 404 return page; 405} 406 407/* 408 * The atomic page->_mapcount, starts from -1: so that transitions 409 * both from it and to it can be tracked, using atomic_inc_and_test 410 * and atomic_add_negative(-1). 411 */ 412static inline void page_mapcount_reset(struct page *page) 413{ 414 atomic_set(&(page)->_mapcount, -1); 415} 416 417static inline int page_mapcount(struct page *page) 418{ 419 return atomic_read(&(page)->_mapcount) + 1; 420} 421 422static inline int page_count(struct page *page) 423{ 424 return atomic_read(&compound_head(page)->_count); 425} 426 427#ifdef CONFIG_HUGETLB_PAGE 428extern int PageHeadHuge(struct page *page_head); 429#else /* CONFIG_HUGETLB_PAGE */ 430static inline int PageHeadHuge(struct page *page_head) 431{ 432 return 0; 433} 434#endif /* CONFIG_HUGETLB_PAGE */ 435 436static inline bool __compound_tail_refcounted(struct page *page) 437{ 438 return !PageSlab(page) && !PageHeadHuge(page); 439} 440 441/* 442 * This takes a head page as parameter and tells if the 443 * tail page reference counting can be skipped. 444 * 445 * For this to be safe, PageSlab and PageHeadHuge must remain true on 446 * any given page where they return true here, until all tail pins 447 * have been released. 448 */ 449static inline bool compound_tail_refcounted(struct page *page) 450{ 451 VM_BUG_ON_PAGE(!PageHead(page), page); 452 return __compound_tail_refcounted(page); 453} 454 455static inline void get_huge_page_tail(struct page *page) 456{ 457 /* 458 * __split_huge_page_refcount() cannot run from under us. 459 */ 460 VM_BUG_ON_PAGE(!PageTail(page), page); 461 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 462 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 463 if (compound_tail_refcounted(page->first_page)) 464 atomic_inc(&page->_mapcount); 465} 466 467extern bool __get_page_tail(struct page *page); 468 469static inline void get_page(struct page *page) 470{ 471 if (unlikely(PageTail(page))) 472 if (likely(__get_page_tail(page))) 473 return; 474 /* 475 * Getting a normal page or the head of a compound page 476 * requires to already have an elevated page->_count. 477 */ 478 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 479 atomic_inc(&page->_count); 480} 481 482static inline struct page *virt_to_head_page(const void *x) 483{ 484 struct page *page = virt_to_page(x); 485 return compound_head(page); 486} 487 488/* 489 * Setup the page count before being freed into the page allocator for 490 * the first time (boot or memory hotplug) 491 */ 492static inline void init_page_count(struct page *page) 493{ 494 atomic_set(&page->_count, 1); 495} 496 497/* 498 * PageBuddy() indicate that the page is free and in the buddy system 499 * (see mm/page_alloc.c). 500 * 501 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 502 * -2 so that an underflow of the page_mapcount() won't be mistaken 503 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 504 * efficiently by most CPU architectures. 505 */ 506#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 507 508static inline int PageBuddy(struct page *page) 509{ 510 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 511} 512 513static inline void __SetPageBuddy(struct page *page) 514{ 515 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 516 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 517} 518 519static inline void __ClearPageBuddy(struct page *page) 520{ 521 VM_BUG_ON_PAGE(!PageBuddy(page), page); 522 atomic_set(&page->_mapcount, -1); 523} 524 525void put_page(struct page *page); 526void put_pages_list(struct list_head *pages); 527 528void split_page(struct page *page, unsigned int order); 529int split_free_page(struct page *page); 530 531/* 532 * Compound pages have a destructor function. Provide a 533 * prototype for that function and accessor functions. 534 * These are _only_ valid on the head of a PG_compound page. 535 */ 536typedef void compound_page_dtor(struct page *); 537 538static inline void set_compound_page_dtor(struct page *page, 539 compound_page_dtor *dtor) 540{ 541 page[1].lru.next = (void *)dtor; 542} 543 544static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 545{ 546 return (compound_page_dtor *)page[1].lru.next; 547} 548 549static inline int compound_order(struct page *page) 550{ 551 if (!PageHead(page)) 552 return 0; 553 return (unsigned long)page[1].lru.prev; 554} 555 556static inline void set_compound_order(struct page *page, unsigned long order) 557{ 558 page[1].lru.prev = (void *)order; 559} 560 561#ifdef CONFIG_MMU 562/* 563 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 564 * servicing faults for write access. In the normal case, do always want 565 * pte_mkwrite. But get_user_pages can cause write faults for mappings 566 * that do not have writing enabled, when used by access_process_vm. 567 */ 568static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 569{ 570 if (likely(vma->vm_flags & VM_WRITE)) 571 pte = pte_mkwrite(pte); 572 return pte; 573} 574#endif 575 576/* 577 * Multiple processes may "see" the same page. E.g. for untouched 578 * mappings of /dev/null, all processes see the same page full of 579 * zeroes, and text pages of executables and shared libraries have 580 * only one copy in memory, at most, normally. 581 * 582 * For the non-reserved pages, page_count(page) denotes a reference count. 583 * page_count() == 0 means the page is free. page->lru is then used for 584 * freelist management in the buddy allocator. 585 * page_count() > 0 means the page has been allocated. 586 * 587 * Pages are allocated by the slab allocator in order to provide memory 588 * to kmalloc and kmem_cache_alloc. In this case, the management of the 589 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 590 * unless a particular usage is carefully commented. (the responsibility of 591 * freeing the kmalloc memory is the caller's, of course). 592 * 593 * A page may be used by anyone else who does a __get_free_page(). 594 * In this case, page_count still tracks the references, and should only 595 * be used through the normal accessor functions. The top bits of page->flags 596 * and page->virtual store page management information, but all other fields 597 * are unused and could be used privately, carefully. The management of this 598 * page is the responsibility of the one who allocated it, and those who have 599 * subsequently been given references to it. 600 * 601 * The other pages (we may call them "pagecache pages") are completely 602 * managed by the Linux memory manager: I/O, buffers, swapping etc. 603 * The following discussion applies only to them. 604 * 605 * A pagecache page contains an opaque `private' member, which belongs to the 606 * page's address_space. Usually, this is the address of a circular list of 607 * the page's disk buffers. PG_private must be set to tell the VM to call 608 * into the filesystem to release these pages. 609 * 610 * A page may belong to an inode's memory mapping. In this case, page->mapping 611 * is the pointer to the inode, and page->index is the file offset of the page, 612 * in units of PAGE_CACHE_SIZE. 613 * 614 * If pagecache pages are not associated with an inode, they are said to be 615 * anonymous pages. These may become associated with the swapcache, and in that 616 * case PG_swapcache is set, and page->private is an offset into the swapcache. 617 * 618 * In either case (swapcache or inode backed), the pagecache itself holds one 619 * reference to the page. Setting PG_private should also increment the 620 * refcount. The each user mapping also has a reference to the page. 621 * 622 * The pagecache pages are stored in a per-mapping radix tree, which is 623 * rooted at mapping->page_tree, and indexed by offset. 624 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 625 * lists, we instead now tag pages as dirty/writeback in the radix tree. 626 * 627 * All pagecache pages may be subject to I/O: 628 * - inode pages may need to be read from disk, 629 * - inode pages which have been modified and are MAP_SHARED may need 630 * to be written back to the inode on disk, 631 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 632 * modified may need to be swapped out to swap space and (later) to be read 633 * back into memory. 634 */ 635 636/* 637 * The zone field is never updated after free_area_init_core() 638 * sets it, so none of the operations on it need to be atomic. 639 */ 640 641/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 642#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 643#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 644#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 645#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 646 647/* 648 * Define the bit shifts to access each section. For non-existent 649 * sections we define the shift as 0; that plus a 0 mask ensures 650 * the compiler will optimise away reference to them. 651 */ 652#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 653#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 654#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 655#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 656 657/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 658#ifdef NODE_NOT_IN_PAGE_FLAGS 659#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 660#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 661 SECTIONS_PGOFF : ZONES_PGOFF) 662#else 663#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 664#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 665 NODES_PGOFF : ZONES_PGOFF) 666#endif 667 668#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 669 670#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 671#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 672#endif 673 674#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 675#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 676#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 677#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1) 678#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 679 680static inline enum zone_type page_zonenum(const struct page *page) 681{ 682 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 683} 684 685#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 686#define SECTION_IN_PAGE_FLAGS 687#endif 688 689/* 690 * The identification function is mainly used by the buddy allocator for 691 * determining if two pages could be buddies. We are not really identifying 692 * the zone since we could be using the section number id if we do not have 693 * node id available in page flags. 694 * We only guarantee that it will return the same value for two combinable 695 * pages in a zone. 696 */ 697static inline int page_zone_id(struct page *page) 698{ 699 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 700} 701 702static inline int zone_to_nid(struct zone *zone) 703{ 704#ifdef CONFIG_NUMA 705 return zone->node; 706#else 707 return 0; 708#endif 709} 710 711#ifdef NODE_NOT_IN_PAGE_FLAGS 712extern int page_to_nid(const struct page *page); 713#else 714static inline int page_to_nid(const struct page *page) 715{ 716 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 717} 718#endif 719 720#ifdef CONFIG_NUMA_BALANCING 721static inline int cpu_pid_to_cpupid(int cpu, int pid) 722{ 723 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 724} 725 726static inline int cpupid_to_pid(int cpupid) 727{ 728 return cpupid & LAST__PID_MASK; 729} 730 731static inline int cpupid_to_cpu(int cpupid) 732{ 733 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 734} 735 736static inline int cpupid_to_nid(int cpupid) 737{ 738 return cpu_to_node(cpupid_to_cpu(cpupid)); 739} 740 741static inline bool cpupid_pid_unset(int cpupid) 742{ 743 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 744} 745 746static inline bool cpupid_cpu_unset(int cpupid) 747{ 748 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 749} 750 751static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 752{ 753 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 754} 755 756#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 757#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 758static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 759{ 760 return xchg(&page->_last_cpupid, cpupid); 761} 762 763static inline int page_cpupid_last(struct page *page) 764{ 765 return page->_last_cpupid; 766} 767static inline void page_cpupid_reset_last(struct page *page) 768{ 769 page->_last_cpupid = -1; 770} 771#else 772static inline int page_cpupid_last(struct page *page) 773{ 774 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 775} 776 777extern int page_cpupid_xchg_last(struct page *page, int cpupid); 778 779static inline void page_cpupid_reset_last(struct page *page) 780{ 781 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 782 783 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 784 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 785} 786#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 787#else /* !CONFIG_NUMA_BALANCING */ 788static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 789{ 790 return page_to_nid(page); /* XXX */ 791} 792 793static inline int page_cpupid_last(struct page *page) 794{ 795 return page_to_nid(page); /* XXX */ 796} 797 798static inline int cpupid_to_nid(int cpupid) 799{ 800 return -1; 801} 802 803static inline int cpupid_to_pid(int cpupid) 804{ 805 return -1; 806} 807 808static inline int cpupid_to_cpu(int cpupid) 809{ 810 return -1; 811} 812 813static inline int cpu_pid_to_cpupid(int nid, int pid) 814{ 815 return -1; 816} 817 818static inline bool cpupid_pid_unset(int cpupid) 819{ 820 return 1; 821} 822 823static inline void page_cpupid_reset_last(struct page *page) 824{ 825} 826 827static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 828{ 829 return false; 830} 831#endif /* CONFIG_NUMA_BALANCING */ 832 833static inline struct zone *page_zone(const struct page *page) 834{ 835 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 836} 837 838#ifdef SECTION_IN_PAGE_FLAGS 839static inline void set_page_section(struct page *page, unsigned long section) 840{ 841 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 842 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 843} 844 845static inline unsigned long page_to_section(const struct page *page) 846{ 847 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 848} 849#endif 850 851static inline void set_page_zone(struct page *page, enum zone_type zone) 852{ 853 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 854 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 855} 856 857static inline void set_page_node(struct page *page, unsigned long node) 858{ 859 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 860 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 861} 862 863static inline void set_page_links(struct page *page, enum zone_type zone, 864 unsigned long node, unsigned long pfn) 865{ 866 set_page_zone(page, zone); 867 set_page_node(page, node); 868#ifdef SECTION_IN_PAGE_FLAGS 869 set_page_section(page, pfn_to_section_nr(pfn)); 870#endif 871} 872 873/* 874 * Some inline functions in vmstat.h depend on page_zone() 875 */ 876#include <linux/vmstat.h> 877 878static __always_inline void *lowmem_page_address(const struct page *page) 879{ 880 return __va(PFN_PHYS(page_to_pfn(page))); 881} 882 883#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 884#define HASHED_PAGE_VIRTUAL 885#endif 886 887#if defined(WANT_PAGE_VIRTUAL) 888static inline void *page_address(const struct page *page) 889{ 890 return page->virtual; 891} 892static inline void set_page_address(struct page *page, void *address) 893{ 894 page->virtual = address; 895} 896#define page_address_init() do { } while(0) 897#endif 898 899#if defined(HASHED_PAGE_VIRTUAL) 900void *page_address(const struct page *page); 901void set_page_address(struct page *page, void *virtual); 902void page_address_init(void); 903#endif 904 905#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 906#define page_address(page) lowmem_page_address(page) 907#define set_page_address(page, address) do { } while(0) 908#define page_address_init() do { } while(0) 909#endif 910 911/* 912 * On an anonymous page mapped into a user virtual memory area, 913 * page->mapping points to its anon_vma, not to a struct address_space; 914 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 915 * 916 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 917 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 918 * and then page->mapping points, not to an anon_vma, but to a private 919 * structure which KSM associates with that merged page. See ksm.h. 920 * 921 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 922 * 923 * Please note that, confusingly, "page_mapping" refers to the inode 924 * address_space which maps the page from disk; whereas "page_mapped" 925 * refers to user virtual address space into which the page is mapped. 926 */ 927#define PAGE_MAPPING_ANON 1 928#define PAGE_MAPPING_KSM 2 929#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 930 931extern struct address_space *page_mapping(struct page *page); 932 933/* Neutral page->mapping pointer to address_space or anon_vma or other */ 934static inline void *page_rmapping(struct page *page) 935{ 936 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 937} 938 939extern struct address_space *__page_file_mapping(struct page *); 940 941static inline 942struct address_space *page_file_mapping(struct page *page) 943{ 944 if (unlikely(PageSwapCache(page))) 945 return __page_file_mapping(page); 946 947 return page->mapping; 948} 949 950static inline int PageAnon(struct page *page) 951{ 952 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 953} 954 955/* 956 * Return the pagecache index of the passed page. Regular pagecache pages 957 * use ->index whereas swapcache pages use ->private 958 */ 959static inline pgoff_t page_index(struct page *page) 960{ 961 if (unlikely(PageSwapCache(page))) 962 return page_private(page); 963 return page->index; 964} 965 966extern pgoff_t __page_file_index(struct page *page); 967 968/* 969 * Return the file index of the page. Regular pagecache pages use ->index 970 * whereas swapcache pages use swp_offset(->private) 971 */ 972static inline pgoff_t page_file_index(struct page *page) 973{ 974 if (unlikely(PageSwapCache(page))) 975 return __page_file_index(page); 976 977 return page->index; 978} 979 980/* 981 * Return true if this page is mapped into pagetables. 982 */ 983static inline int page_mapped(struct page *page) 984{ 985 return atomic_read(&(page)->_mapcount) >= 0; 986} 987 988/* 989 * Different kinds of faults, as returned by handle_mm_fault(). 990 * Used to decide whether a process gets delivered SIGBUS or 991 * just gets major/minor fault counters bumped up. 992 */ 993 994#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 995 996#define VM_FAULT_OOM 0x0001 997#define VM_FAULT_SIGBUS 0x0002 998#define VM_FAULT_MAJOR 0x0004 999#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1000#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1001#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1002 1003#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1004#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1005#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1006#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1007 1008#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1009 1010#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 1011 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) 1012 1013/* Encode hstate index for a hwpoisoned large page */ 1014#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1015#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1016 1017/* 1018 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1019 */ 1020extern void pagefault_out_of_memory(void); 1021 1022#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1023 1024/* 1025 * Flags passed to show_mem() and show_free_areas() to suppress output in 1026 * various contexts. 1027 */ 1028#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1029 1030extern void show_free_areas(unsigned int flags); 1031extern bool skip_free_areas_node(unsigned int flags, int nid); 1032 1033int shmem_zero_setup(struct vm_area_struct *); 1034 1035extern int can_do_mlock(void); 1036extern int user_shm_lock(size_t, struct user_struct *); 1037extern void user_shm_unlock(size_t, struct user_struct *); 1038 1039/* 1040 * Parameter block passed down to zap_pte_range in exceptional cases. 1041 */ 1042struct zap_details { 1043 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 1044 struct address_space *check_mapping; /* Check page->mapping if set */ 1045 pgoff_t first_index; /* Lowest page->index to unmap */ 1046 pgoff_t last_index; /* Highest page->index to unmap */ 1047}; 1048 1049struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1050 pte_t pte); 1051 1052int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1053 unsigned long size); 1054void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1055 unsigned long size, struct zap_details *); 1056void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1057 unsigned long start, unsigned long end); 1058 1059/** 1060 * mm_walk - callbacks for walk_page_range 1061 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 1062 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1063 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1064 * this handler is required to be able to handle 1065 * pmd_trans_huge() pmds. They may simply choose to 1066 * split_huge_page() instead of handling it explicitly. 1067 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1068 * @pte_hole: if set, called for each hole at all levels 1069 * @hugetlb_entry: if set, called for each hugetlb entry 1070 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 1071 * is used. 1072 * 1073 * (see walk_page_range for more details) 1074 */ 1075struct mm_walk { 1076 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 1077 unsigned long next, struct mm_walk *walk); 1078 int (*pud_entry)(pud_t *pud, unsigned long addr, 1079 unsigned long next, struct mm_walk *walk); 1080 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1081 unsigned long next, struct mm_walk *walk); 1082 int (*pte_entry)(pte_t *pte, unsigned long addr, 1083 unsigned long next, struct mm_walk *walk); 1084 int (*pte_hole)(unsigned long addr, unsigned long next, 1085 struct mm_walk *walk); 1086 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1087 unsigned long addr, unsigned long next, 1088 struct mm_walk *walk); 1089 struct mm_struct *mm; 1090 void *private; 1091}; 1092 1093int walk_page_range(unsigned long addr, unsigned long end, 1094 struct mm_walk *walk); 1095void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1096 unsigned long end, unsigned long floor, unsigned long ceiling); 1097int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1098 struct vm_area_struct *vma); 1099void unmap_mapping_range(struct address_space *mapping, 1100 loff_t const holebegin, loff_t const holelen, int even_cows); 1101int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1102 unsigned long *pfn); 1103int follow_phys(struct vm_area_struct *vma, unsigned long address, 1104 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1105int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1106 void *buf, int len, int write); 1107 1108static inline void unmap_shared_mapping_range(struct address_space *mapping, 1109 loff_t const holebegin, loff_t const holelen) 1110{ 1111 unmap_mapping_range(mapping, holebegin, holelen, 0); 1112} 1113 1114extern void truncate_pagecache(struct inode *inode, loff_t new); 1115extern void truncate_setsize(struct inode *inode, loff_t newsize); 1116void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1117int truncate_inode_page(struct address_space *mapping, struct page *page); 1118int generic_error_remove_page(struct address_space *mapping, struct page *page); 1119int invalidate_inode_page(struct page *page); 1120 1121#ifdef CONFIG_MMU 1122extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1123 unsigned long address, unsigned int flags); 1124extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1125 unsigned long address, unsigned int fault_flags); 1126#else 1127static inline int handle_mm_fault(struct mm_struct *mm, 1128 struct vm_area_struct *vma, unsigned long address, 1129 unsigned int flags) 1130{ 1131 /* should never happen if there's no MMU */ 1132 BUG(); 1133 return VM_FAULT_SIGBUS; 1134} 1135static inline int fixup_user_fault(struct task_struct *tsk, 1136 struct mm_struct *mm, unsigned long address, 1137 unsigned int fault_flags) 1138{ 1139 /* should never happen if there's no MMU */ 1140 BUG(); 1141 return -EFAULT; 1142} 1143#endif 1144 1145extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1146extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1147 void *buf, int len, int write); 1148 1149long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1150 unsigned long start, unsigned long nr_pages, 1151 unsigned int foll_flags, struct page **pages, 1152 struct vm_area_struct **vmas, int *nonblocking); 1153long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1154 unsigned long start, unsigned long nr_pages, 1155 int write, int force, struct page **pages, 1156 struct vm_area_struct **vmas); 1157int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1158 struct page **pages); 1159struct kvec; 1160int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1161 struct page **pages); 1162int get_kernel_page(unsigned long start, int write, struct page **pages); 1163struct page *get_dump_page(unsigned long addr); 1164 1165extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1166extern void do_invalidatepage(struct page *page, unsigned int offset, 1167 unsigned int length); 1168 1169int __set_page_dirty_nobuffers(struct page *page); 1170int __set_page_dirty_no_writeback(struct page *page); 1171int redirty_page_for_writepage(struct writeback_control *wbc, 1172 struct page *page); 1173void account_page_dirtied(struct page *page, struct address_space *mapping); 1174void account_page_writeback(struct page *page); 1175int set_page_dirty(struct page *page); 1176int set_page_dirty_lock(struct page *page); 1177int clear_page_dirty_for_io(struct page *page); 1178 1179/* Is the vma a continuation of the stack vma above it? */ 1180static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1181{ 1182 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1183} 1184 1185static inline int stack_guard_page_start(struct vm_area_struct *vma, 1186 unsigned long addr) 1187{ 1188 return (vma->vm_flags & VM_GROWSDOWN) && 1189 (vma->vm_start == addr) && 1190 !vma_growsdown(vma->vm_prev, addr); 1191} 1192 1193/* Is the vma a continuation of the stack vma below it? */ 1194static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1195{ 1196 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1197} 1198 1199static inline int stack_guard_page_end(struct vm_area_struct *vma, 1200 unsigned long addr) 1201{ 1202 return (vma->vm_flags & VM_GROWSUP) && 1203 (vma->vm_end == addr) && 1204 !vma_growsup(vma->vm_next, addr); 1205} 1206 1207extern pid_t 1208vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1209 1210extern unsigned long move_page_tables(struct vm_area_struct *vma, 1211 unsigned long old_addr, struct vm_area_struct *new_vma, 1212 unsigned long new_addr, unsigned long len, 1213 bool need_rmap_locks); 1214extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1215 unsigned long end, pgprot_t newprot, 1216 int dirty_accountable, int prot_numa); 1217extern int mprotect_fixup(struct vm_area_struct *vma, 1218 struct vm_area_struct **pprev, unsigned long start, 1219 unsigned long end, unsigned long newflags); 1220 1221/* 1222 * doesn't attempt to fault and will return short. 1223 */ 1224int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1225 struct page **pages); 1226/* 1227 * per-process(per-mm_struct) statistics. 1228 */ 1229static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1230{ 1231 long val = atomic_long_read(&mm->rss_stat.count[member]); 1232 1233#ifdef SPLIT_RSS_COUNTING 1234 /* 1235 * counter is updated in asynchronous manner and may go to minus. 1236 * But it's never be expected number for users. 1237 */ 1238 if (val < 0) 1239 val = 0; 1240#endif 1241 return (unsigned long)val; 1242} 1243 1244static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1245{ 1246 atomic_long_add(value, &mm->rss_stat.count[member]); 1247} 1248 1249static inline void inc_mm_counter(struct mm_struct *mm, int member) 1250{ 1251 atomic_long_inc(&mm->rss_stat.count[member]); 1252} 1253 1254static inline void dec_mm_counter(struct mm_struct *mm, int member) 1255{ 1256 atomic_long_dec(&mm->rss_stat.count[member]); 1257} 1258 1259static inline unsigned long get_mm_rss(struct mm_struct *mm) 1260{ 1261 return get_mm_counter(mm, MM_FILEPAGES) + 1262 get_mm_counter(mm, MM_ANONPAGES); 1263} 1264 1265static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1266{ 1267 return max(mm->hiwater_rss, get_mm_rss(mm)); 1268} 1269 1270static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1271{ 1272 return max(mm->hiwater_vm, mm->total_vm); 1273} 1274 1275static inline void update_hiwater_rss(struct mm_struct *mm) 1276{ 1277 unsigned long _rss = get_mm_rss(mm); 1278 1279 if ((mm)->hiwater_rss < _rss) 1280 (mm)->hiwater_rss = _rss; 1281} 1282 1283static inline void update_hiwater_vm(struct mm_struct *mm) 1284{ 1285 if (mm->hiwater_vm < mm->total_vm) 1286 mm->hiwater_vm = mm->total_vm; 1287} 1288 1289static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1290 struct mm_struct *mm) 1291{ 1292 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1293 1294 if (*maxrss < hiwater_rss) 1295 *maxrss = hiwater_rss; 1296} 1297 1298#if defined(SPLIT_RSS_COUNTING) 1299void sync_mm_rss(struct mm_struct *mm); 1300#else 1301static inline void sync_mm_rss(struct mm_struct *mm) 1302{ 1303} 1304#endif 1305 1306int vma_wants_writenotify(struct vm_area_struct *vma); 1307 1308extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1309 spinlock_t **ptl); 1310static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1311 spinlock_t **ptl) 1312{ 1313 pte_t *ptep; 1314 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1315 return ptep; 1316} 1317 1318#ifdef __PAGETABLE_PUD_FOLDED 1319static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1320 unsigned long address) 1321{ 1322 return 0; 1323} 1324#else 1325int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1326#endif 1327 1328#ifdef __PAGETABLE_PMD_FOLDED 1329static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1330 unsigned long address) 1331{ 1332 return 0; 1333} 1334#else 1335int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1336#endif 1337 1338int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1339 pmd_t *pmd, unsigned long address); 1340int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1341 1342/* 1343 * The following ifdef needed to get the 4level-fixup.h header to work. 1344 * Remove it when 4level-fixup.h has been removed. 1345 */ 1346#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1347static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1348{ 1349 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1350 NULL: pud_offset(pgd, address); 1351} 1352 1353static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1354{ 1355 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1356 NULL: pmd_offset(pud, address); 1357} 1358#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1359 1360#if USE_SPLIT_PTE_PTLOCKS 1361#if ALLOC_SPLIT_PTLOCKS 1362void __init ptlock_cache_init(void); 1363extern bool ptlock_alloc(struct page *page); 1364extern void ptlock_free(struct page *page); 1365 1366static inline spinlock_t *ptlock_ptr(struct page *page) 1367{ 1368 return page->ptl; 1369} 1370#else /* ALLOC_SPLIT_PTLOCKS */ 1371static inline void ptlock_cache_init(void) 1372{ 1373} 1374 1375static inline bool ptlock_alloc(struct page *page) 1376{ 1377 return true; 1378} 1379 1380static inline void ptlock_free(struct page *page) 1381{ 1382} 1383 1384static inline spinlock_t *ptlock_ptr(struct page *page) 1385{ 1386 return &page->ptl; 1387} 1388#endif /* ALLOC_SPLIT_PTLOCKS */ 1389 1390static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1391{ 1392 return ptlock_ptr(pmd_page(*pmd)); 1393} 1394 1395static inline bool ptlock_init(struct page *page) 1396{ 1397 /* 1398 * prep_new_page() initialize page->private (and therefore page->ptl) 1399 * with 0. Make sure nobody took it in use in between. 1400 * 1401 * It can happen if arch try to use slab for page table allocation: 1402 * slab code uses page->slab_cache and page->first_page (for tail 1403 * pages), which share storage with page->ptl. 1404 */ 1405 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1406 if (!ptlock_alloc(page)) 1407 return false; 1408 spin_lock_init(ptlock_ptr(page)); 1409 return true; 1410} 1411 1412/* Reset page->mapping so free_pages_check won't complain. */ 1413static inline void pte_lock_deinit(struct page *page) 1414{ 1415 page->mapping = NULL; 1416 ptlock_free(page); 1417} 1418 1419#else /* !USE_SPLIT_PTE_PTLOCKS */ 1420/* 1421 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1422 */ 1423static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1424{ 1425 return &mm->page_table_lock; 1426} 1427static inline void ptlock_cache_init(void) {} 1428static inline bool ptlock_init(struct page *page) { return true; } 1429static inline void pte_lock_deinit(struct page *page) {} 1430#endif /* USE_SPLIT_PTE_PTLOCKS */ 1431 1432static inline void pgtable_init(void) 1433{ 1434 ptlock_cache_init(); 1435 pgtable_cache_init(); 1436} 1437 1438static inline bool pgtable_page_ctor(struct page *page) 1439{ 1440 inc_zone_page_state(page, NR_PAGETABLE); 1441 return ptlock_init(page); 1442} 1443 1444static inline void pgtable_page_dtor(struct page *page) 1445{ 1446 pte_lock_deinit(page); 1447 dec_zone_page_state(page, NR_PAGETABLE); 1448} 1449 1450#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1451({ \ 1452 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1453 pte_t *__pte = pte_offset_map(pmd, address); \ 1454 *(ptlp) = __ptl; \ 1455 spin_lock(__ptl); \ 1456 __pte; \ 1457}) 1458 1459#define pte_unmap_unlock(pte, ptl) do { \ 1460 spin_unlock(ptl); \ 1461 pte_unmap(pte); \ 1462} while (0) 1463 1464#define pte_alloc_map(mm, vma, pmd, address) \ 1465 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1466 pmd, address))? \ 1467 NULL: pte_offset_map(pmd, address)) 1468 1469#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1470 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1471 pmd, address))? \ 1472 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1473 1474#define pte_alloc_kernel(pmd, address) \ 1475 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1476 NULL: pte_offset_kernel(pmd, address)) 1477 1478#if USE_SPLIT_PMD_PTLOCKS 1479 1480static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1481{ 1482 return ptlock_ptr(virt_to_page(pmd)); 1483} 1484 1485static inline bool pgtable_pmd_page_ctor(struct page *page) 1486{ 1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1488 page->pmd_huge_pte = NULL; 1489#endif 1490 return ptlock_init(page); 1491} 1492 1493static inline void pgtable_pmd_page_dtor(struct page *page) 1494{ 1495#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1496 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1497#endif 1498 ptlock_free(page); 1499} 1500 1501#define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte) 1502 1503#else 1504 1505static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1506{ 1507 return &mm->page_table_lock; 1508} 1509 1510static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1511static inline void pgtable_pmd_page_dtor(struct page *page) {} 1512 1513#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1514 1515#endif 1516 1517static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1518{ 1519 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1520 spin_lock(ptl); 1521 return ptl; 1522} 1523 1524extern void free_area_init(unsigned long * zones_size); 1525extern void free_area_init_node(int nid, unsigned long * zones_size, 1526 unsigned long zone_start_pfn, unsigned long *zholes_size); 1527extern void free_initmem(void); 1528 1529/* 1530 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1531 * into the buddy system. The freed pages will be poisoned with pattern 1532 * "poison" if it's within range [0, UCHAR_MAX]. 1533 * Return pages freed into the buddy system. 1534 */ 1535extern unsigned long free_reserved_area(void *start, void *end, 1536 int poison, char *s); 1537 1538#ifdef CONFIG_HIGHMEM 1539/* 1540 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1541 * and totalram_pages. 1542 */ 1543extern void free_highmem_page(struct page *page); 1544#endif 1545 1546extern void adjust_managed_page_count(struct page *page, long count); 1547extern void mem_init_print_info(const char *str); 1548 1549/* Free the reserved page into the buddy system, so it gets managed. */ 1550static inline void __free_reserved_page(struct page *page) 1551{ 1552 ClearPageReserved(page); 1553 init_page_count(page); 1554 __free_page(page); 1555} 1556 1557static inline void free_reserved_page(struct page *page) 1558{ 1559 __free_reserved_page(page); 1560 adjust_managed_page_count(page, 1); 1561} 1562 1563static inline void mark_page_reserved(struct page *page) 1564{ 1565 SetPageReserved(page); 1566 adjust_managed_page_count(page, -1); 1567} 1568 1569/* 1570 * Default method to free all the __init memory into the buddy system. 1571 * The freed pages will be poisoned with pattern "poison" if it's within 1572 * range [0, UCHAR_MAX]. 1573 * Return pages freed into the buddy system. 1574 */ 1575static inline unsigned long free_initmem_default(int poison) 1576{ 1577 extern char __init_begin[], __init_end[]; 1578 1579 return free_reserved_area(&__init_begin, &__init_end, 1580 poison, "unused kernel"); 1581} 1582 1583static inline unsigned long get_num_physpages(void) 1584{ 1585 int nid; 1586 unsigned long phys_pages = 0; 1587 1588 for_each_online_node(nid) 1589 phys_pages += node_present_pages(nid); 1590 1591 return phys_pages; 1592} 1593 1594#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1595/* 1596 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1597 * zones, allocate the backing mem_map and account for memory holes in a more 1598 * architecture independent manner. This is a substitute for creating the 1599 * zone_sizes[] and zholes_size[] arrays and passing them to 1600 * free_area_init_node() 1601 * 1602 * An architecture is expected to register range of page frames backed by 1603 * physical memory with memblock_add[_node]() before calling 1604 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1605 * usage, an architecture is expected to do something like 1606 * 1607 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1608 * max_highmem_pfn}; 1609 * for_each_valid_physical_page_range() 1610 * memblock_add_node(base, size, nid) 1611 * free_area_init_nodes(max_zone_pfns); 1612 * 1613 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1614 * registered physical page range. Similarly 1615 * sparse_memory_present_with_active_regions() calls memory_present() for 1616 * each range when SPARSEMEM is enabled. 1617 * 1618 * See mm/page_alloc.c for more information on each function exposed by 1619 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1620 */ 1621extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1622unsigned long node_map_pfn_alignment(void); 1623unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1624 unsigned long end_pfn); 1625extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1626 unsigned long end_pfn); 1627extern void get_pfn_range_for_nid(unsigned int nid, 1628 unsigned long *start_pfn, unsigned long *end_pfn); 1629extern unsigned long find_min_pfn_with_active_regions(void); 1630extern void free_bootmem_with_active_regions(int nid, 1631 unsigned long max_low_pfn); 1632extern void sparse_memory_present_with_active_regions(int nid); 1633 1634#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1635 1636#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1637 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1638static inline int __early_pfn_to_nid(unsigned long pfn) 1639{ 1640 return 0; 1641} 1642#else 1643/* please see mm/page_alloc.c */ 1644extern int __meminit early_pfn_to_nid(unsigned long pfn); 1645#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1646/* there is a per-arch backend function. */ 1647extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1648#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1649#endif 1650 1651extern void set_dma_reserve(unsigned long new_dma_reserve); 1652extern void memmap_init_zone(unsigned long, int, unsigned long, 1653 unsigned long, enum memmap_context); 1654extern void setup_per_zone_wmarks(void); 1655extern int __meminit init_per_zone_wmark_min(void); 1656extern void mem_init(void); 1657extern void __init mmap_init(void); 1658extern void show_mem(unsigned int flags); 1659extern void si_meminfo(struct sysinfo * val); 1660extern void si_meminfo_node(struct sysinfo *val, int nid); 1661 1662extern __printf(3, 4) 1663void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1664 1665extern void setup_per_cpu_pageset(void); 1666 1667extern void zone_pcp_update(struct zone *zone); 1668extern void zone_pcp_reset(struct zone *zone); 1669 1670/* page_alloc.c */ 1671extern int min_free_kbytes; 1672 1673/* nommu.c */ 1674extern atomic_long_t mmap_pages_allocated; 1675extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1676 1677/* interval_tree.c */ 1678void vma_interval_tree_insert(struct vm_area_struct *node, 1679 struct rb_root *root); 1680void vma_interval_tree_insert_after(struct vm_area_struct *node, 1681 struct vm_area_struct *prev, 1682 struct rb_root *root); 1683void vma_interval_tree_remove(struct vm_area_struct *node, 1684 struct rb_root *root); 1685struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1686 unsigned long start, unsigned long last); 1687struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1688 unsigned long start, unsigned long last); 1689 1690#define vma_interval_tree_foreach(vma, root, start, last) \ 1691 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1692 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1693 1694static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1695 struct list_head *list) 1696{ 1697 list_add_tail(&vma->shared.nonlinear, list); 1698} 1699 1700void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1701 struct rb_root *root); 1702void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1703 struct rb_root *root); 1704struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1705 struct rb_root *root, unsigned long start, unsigned long last); 1706struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1707 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1708#ifdef CONFIG_DEBUG_VM_RB 1709void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1710#endif 1711 1712#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1713 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1714 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1715 1716/* mmap.c */ 1717extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1718extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1719 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1720extern struct vm_area_struct *vma_merge(struct mm_struct *, 1721 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1722 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1723 struct mempolicy *); 1724extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1725extern int split_vma(struct mm_struct *, 1726 struct vm_area_struct *, unsigned long addr, int new_below); 1727extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1728extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1729 struct rb_node **, struct rb_node *); 1730extern void unlink_file_vma(struct vm_area_struct *); 1731extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1732 unsigned long addr, unsigned long len, pgoff_t pgoff, 1733 bool *need_rmap_locks); 1734extern void exit_mmap(struct mm_struct *); 1735 1736extern int mm_take_all_locks(struct mm_struct *mm); 1737extern void mm_drop_all_locks(struct mm_struct *mm); 1738 1739extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1740extern struct file *get_mm_exe_file(struct mm_struct *mm); 1741 1742extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1743extern int install_special_mapping(struct mm_struct *mm, 1744 unsigned long addr, unsigned long len, 1745 unsigned long flags, struct page **pages); 1746 1747extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1748 1749extern unsigned long mmap_region(struct file *file, unsigned long addr, 1750 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1751extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1752 unsigned long len, unsigned long prot, unsigned long flags, 1753 unsigned long pgoff, unsigned long *populate); 1754extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1755 1756#ifdef CONFIG_MMU 1757extern int __mm_populate(unsigned long addr, unsigned long len, 1758 int ignore_errors); 1759static inline void mm_populate(unsigned long addr, unsigned long len) 1760{ 1761 /* Ignore errors */ 1762 (void) __mm_populate(addr, len, 1); 1763} 1764#else 1765static inline void mm_populate(unsigned long addr, unsigned long len) {} 1766#endif 1767 1768/* These take the mm semaphore themselves */ 1769extern unsigned long vm_brk(unsigned long, unsigned long); 1770extern int vm_munmap(unsigned long, size_t); 1771extern unsigned long vm_mmap(struct file *, unsigned long, 1772 unsigned long, unsigned long, 1773 unsigned long, unsigned long); 1774 1775struct vm_unmapped_area_info { 1776#define VM_UNMAPPED_AREA_TOPDOWN 1 1777 unsigned long flags; 1778 unsigned long length; 1779 unsigned long low_limit; 1780 unsigned long high_limit; 1781 unsigned long align_mask; 1782 unsigned long align_offset; 1783}; 1784 1785extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1786extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1787 1788/* 1789 * Search for an unmapped address range. 1790 * 1791 * We are looking for a range that: 1792 * - does not intersect with any VMA; 1793 * - is contained within the [low_limit, high_limit) interval; 1794 * - is at least the desired size. 1795 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1796 */ 1797static inline unsigned long 1798vm_unmapped_area(struct vm_unmapped_area_info *info) 1799{ 1800 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1801 return unmapped_area(info); 1802 else 1803 return unmapped_area_topdown(info); 1804} 1805 1806/* truncate.c */ 1807extern void truncate_inode_pages(struct address_space *, loff_t); 1808extern void truncate_inode_pages_range(struct address_space *, 1809 loff_t lstart, loff_t lend); 1810 1811/* generic vm_area_ops exported for stackable file systems */ 1812extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1813extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1814 1815/* mm/page-writeback.c */ 1816int write_one_page(struct page *page, int wait); 1817void task_dirty_inc(struct task_struct *tsk); 1818 1819/* readahead.c */ 1820#define VM_MAX_READAHEAD 128 /* kbytes */ 1821#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1822 1823int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1824 pgoff_t offset, unsigned long nr_to_read); 1825 1826void page_cache_sync_readahead(struct address_space *mapping, 1827 struct file_ra_state *ra, 1828 struct file *filp, 1829 pgoff_t offset, 1830 unsigned long size); 1831 1832void page_cache_async_readahead(struct address_space *mapping, 1833 struct file_ra_state *ra, 1834 struct file *filp, 1835 struct page *pg, 1836 pgoff_t offset, 1837 unsigned long size); 1838 1839unsigned long max_sane_readahead(unsigned long nr); 1840unsigned long ra_submit(struct file_ra_state *ra, 1841 struct address_space *mapping, 1842 struct file *filp); 1843 1844/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1845extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1846 1847/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1848extern int expand_downwards(struct vm_area_struct *vma, 1849 unsigned long address); 1850#if VM_GROWSUP 1851extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1852#else 1853 #define expand_upwards(vma, address) do { } while (0) 1854#endif 1855 1856/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1857extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1858extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1859 struct vm_area_struct **pprev); 1860 1861/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1862 NULL if none. Assume start_addr < end_addr. */ 1863static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1864{ 1865 struct vm_area_struct * vma = find_vma(mm,start_addr); 1866 1867 if (vma && end_addr <= vma->vm_start) 1868 vma = NULL; 1869 return vma; 1870} 1871 1872static inline unsigned long vma_pages(struct vm_area_struct *vma) 1873{ 1874 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1875} 1876 1877/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1878static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1879 unsigned long vm_start, unsigned long vm_end) 1880{ 1881 struct vm_area_struct *vma = find_vma(mm, vm_start); 1882 1883 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1884 vma = NULL; 1885 1886 return vma; 1887} 1888 1889#ifdef CONFIG_MMU 1890pgprot_t vm_get_page_prot(unsigned long vm_flags); 1891#else 1892static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1893{ 1894 return __pgprot(0); 1895} 1896#endif 1897 1898#ifdef CONFIG_NUMA_BALANCING 1899unsigned long change_prot_numa(struct vm_area_struct *vma, 1900 unsigned long start, unsigned long end); 1901#endif 1902 1903struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1904int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1905 unsigned long pfn, unsigned long size, pgprot_t); 1906int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1907int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1908 unsigned long pfn); 1909int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1910 unsigned long pfn); 1911int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1912 1913 1914struct page *follow_page_mask(struct vm_area_struct *vma, 1915 unsigned long address, unsigned int foll_flags, 1916 unsigned int *page_mask); 1917 1918static inline struct page *follow_page(struct vm_area_struct *vma, 1919 unsigned long address, unsigned int foll_flags) 1920{ 1921 unsigned int unused_page_mask; 1922 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1923} 1924 1925#define FOLL_WRITE 0x01 /* check pte is writable */ 1926#define FOLL_TOUCH 0x02 /* mark page accessed */ 1927#define FOLL_GET 0x04 /* do get_page on page */ 1928#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1929#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1930#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1931 * and return without waiting upon it */ 1932#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1933#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1934#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1935#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1936#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1937 1938typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1939 void *data); 1940extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1941 unsigned long size, pte_fn_t fn, void *data); 1942 1943#ifdef CONFIG_PROC_FS 1944void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1945#else 1946static inline void vm_stat_account(struct mm_struct *mm, 1947 unsigned long flags, struct file *file, long pages) 1948{ 1949 mm->total_vm += pages; 1950} 1951#endif /* CONFIG_PROC_FS */ 1952 1953#ifdef CONFIG_DEBUG_PAGEALLOC 1954extern void kernel_map_pages(struct page *page, int numpages, int enable); 1955#ifdef CONFIG_HIBERNATION 1956extern bool kernel_page_present(struct page *page); 1957#endif /* CONFIG_HIBERNATION */ 1958#else 1959static inline void 1960kernel_map_pages(struct page *page, int numpages, int enable) {} 1961#ifdef CONFIG_HIBERNATION 1962static inline bool kernel_page_present(struct page *page) { return true; } 1963#endif /* CONFIG_HIBERNATION */ 1964#endif 1965 1966extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1967#ifdef __HAVE_ARCH_GATE_AREA 1968int in_gate_area_no_mm(unsigned long addr); 1969int in_gate_area(struct mm_struct *mm, unsigned long addr); 1970#else 1971int in_gate_area_no_mm(unsigned long addr); 1972#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1973#endif /* __HAVE_ARCH_GATE_AREA */ 1974 1975#ifdef CONFIG_SYSCTL 1976extern int sysctl_drop_caches; 1977int drop_caches_sysctl_handler(struct ctl_table *, int, 1978 void __user *, size_t *, loff_t *); 1979#endif 1980 1981unsigned long shrink_slab(struct shrink_control *shrink, 1982 unsigned long nr_pages_scanned, 1983 unsigned long lru_pages); 1984 1985#ifndef CONFIG_MMU 1986#define randomize_va_space 0 1987#else 1988extern int randomize_va_space; 1989#endif 1990 1991const char * arch_vma_name(struct vm_area_struct *vma); 1992void print_vma_addr(char *prefix, unsigned long rip); 1993 1994void sparse_mem_maps_populate_node(struct page **map_map, 1995 unsigned long pnum_begin, 1996 unsigned long pnum_end, 1997 unsigned long map_count, 1998 int nodeid); 1999 2000struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2001pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2002pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2003pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2004pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2005void *vmemmap_alloc_block(unsigned long size, int node); 2006void *vmemmap_alloc_block_buf(unsigned long size, int node); 2007void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2008int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2009 int node); 2010int vmemmap_populate(unsigned long start, unsigned long end, int node); 2011void vmemmap_populate_print_last(void); 2012#ifdef CONFIG_MEMORY_HOTPLUG 2013void vmemmap_free(unsigned long start, unsigned long end); 2014#endif 2015void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2016 unsigned long size); 2017 2018enum mf_flags { 2019 MF_COUNT_INCREASED = 1 << 0, 2020 MF_ACTION_REQUIRED = 1 << 1, 2021 MF_MUST_KILL = 1 << 2, 2022 MF_SOFT_OFFLINE = 1 << 3, 2023}; 2024extern int memory_failure(unsigned long pfn, int trapno, int flags); 2025extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2026extern int unpoison_memory(unsigned long pfn); 2027extern int sysctl_memory_failure_early_kill; 2028extern int sysctl_memory_failure_recovery; 2029extern void shake_page(struct page *p, int access); 2030extern atomic_long_t num_poisoned_pages; 2031extern int soft_offline_page(struct page *page, int flags); 2032 2033#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2034extern void clear_huge_page(struct page *page, 2035 unsigned long addr, 2036 unsigned int pages_per_huge_page); 2037extern void copy_user_huge_page(struct page *dst, struct page *src, 2038 unsigned long addr, struct vm_area_struct *vma, 2039 unsigned int pages_per_huge_page); 2040#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2041 2042#ifdef CONFIG_DEBUG_PAGEALLOC 2043extern unsigned int _debug_guardpage_minorder; 2044 2045static inline unsigned int debug_guardpage_minorder(void) 2046{ 2047 return _debug_guardpage_minorder; 2048} 2049 2050static inline bool page_is_guard(struct page *page) 2051{ 2052 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 2053} 2054#else 2055static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2056static inline bool page_is_guard(struct page *page) { return false; } 2057#endif /* CONFIG_DEBUG_PAGEALLOC */ 2058 2059#if MAX_NUMNODES > 1 2060void __init setup_nr_node_ids(void); 2061#else 2062static inline void setup_nr_node_ids(void) {} 2063#endif 2064 2065#endif /* __KERNEL__ */ 2066#endif /* _LINUX_MM_H */