A game about forced loneliness, made by TACStudios
1using static UnityEngine.Mathf;
2
3namespace UnityEngine.Rendering
4{
5 /// <summary>
6 /// An implementation of Hable's artist-friendly tonemapping curve.
7 /// http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/
8 /// </summary>
9 public class HableCurve
10 {
11 /// <summary>
12 /// Individual curve segment.
13 /// </summary>
14 public class Segment
15 {
16 /// <summary>
17 /// The offset of the segment on the X axis.
18 /// </summary>
19 public float offsetX;
20
21 /// <summary>
22 /// The offset of the segment on the Y axis.
23 /// </summary>
24 public float offsetY;
25
26 /// <summary>
27 /// The scale of the segment on the X axis.
28 /// </summary>
29 public float scaleX;
30
31 /// <summary>
32 /// The scale of the segment on the Y axis.
33 /// </summary>
34 public float scaleY;
35
36 /// <summary>
37 /// <c>ln(A)</c> constant in the power curve <c>y = e^(ln(A) + B*ln(x))</c>.
38 /// </summary>
39 public float lnA;
40
41 /// <summary>
42 /// <c>B</c> constant in the power curve <c>y = e^(ln(A) + B*ln(x))</c>.
43 /// </summary>
44 public float B;
45
46 /// <summary>
47 /// Evaluate a point on the curve.
48 /// </summary>
49 /// <param name="x">The point to evaluate.</param>
50 /// <returns>The value of the curve, at the point specified.</returns>
51 public float Eval(float x)
52 {
53 float x0 = (x - offsetX) * scaleX;
54 float y0 = 0f;
55
56 // log(0) is undefined but our function should evaluate to 0. There are better ways
57 // to handle this, but it's doing it the slow way here for clarity.
58 if (x0 > 0)
59 y0 = Exp(lnA + B * Log(x0));
60
61 return y0 * scaleY + offsetY;
62 }
63 }
64
65 struct DirectParams
66 {
67 internal float x0;
68 internal float y0;
69 internal float x1;
70 internal float y1;
71 internal float W;
72
73 internal float overshootX;
74 internal float overshootY;
75
76 internal float gamma;
77 }
78
79 /// <summary>
80 /// The white point.
81 /// </summary>
82 public float whitePoint { get; private set; }
83
84 /// <summary>
85 /// The inverse of the white point.
86 /// </summary>
87 /// <seealso cref="whitePoint"/>
88 public float inverseWhitePoint { get; private set; }
89
90 /// <summary>
91 /// The start of the linear section (middle segment of the curve).
92 /// </summary>
93 public float x0 { get; private set; }
94
95 /// <summary>
96 /// The end of the linear section (middle segment of the curve).
97 /// </summary>
98 public float x1 { get; private set; }
99
100
101 /// <summary>
102 /// The three segments of the curve.
103 /// </summary>
104 public readonly Segment[] segments = new Segment[3];
105
106 /// <summary>
107 /// Creates a new curve.
108 /// </summary>
109 public HableCurve()
110 {
111 for (int i = 0; i < 3; i++)
112 segments[i] = new Segment();
113
114 uniforms = new Uniforms(this);
115 }
116
117 /// <summary>
118 /// Evaluates a point on the curve.
119 /// </summary>
120 /// <param name="x">The x-coordinate at which to evaluate the curve.</param>
121 /// <returns>The y-coordinate (value) of the curve at the specified x-coordinate.</returns>
122 public float Eval(float x)
123 {
124 float normX = x * inverseWhitePoint;
125 int index = (normX < x0) ? 0 : ((normX < x1) ? 1 : 2);
126 var segment = segments[index];
127 float ret = segment.Eval(normX);
128 return ret;
129 }
130
131 /// <summary>
132 /// Initializes the curve.
133 /// </summary>
134 /// <param name="toeStrength">The strength of the transition between the curve's toe and the curve's mid-section. A value of 0 results in no transition and a value of 1 results in a very hard transition.</param>
135 /// <param name="toeLength">The length of the curve's toe. Higher values result in longer toes and therefore contain more of the dynamic range.</param>
136 /// <param name="shoulderStrength">The strength of the transition between the curve's midsection and the curve's shoulder. A value of 0 results in no transition and a value of 1 results in a very hard transition.</param>
137 /// <param name="shoulderLength">The amount of f-stops to add to the dynamic range of the curve. This is how much of the highlights that the curve takes into account.</param>
138 /// <param name="shoulderAngle">How much overshoot to add to the curve's shoulder.</param>
139 /// <param name="gamma">A gamma correction to the entire curve.</param>
140 public void Init(float toeStrength, float toeLength, float shoulderStrength, float shoulderLength, float shoulderAngle, float gamma)
141 {
142 var dstParams = new DirectParams();
143
144 // This is not actually the display gamma. It's just a UI space to avoid having to
145 // enter small numbers for the input.
146 const float kPerceptualGamma = 2.2f;
147
148 // Constraints
149 {
150 toeLength = Pow(Clamp01(toeLength), kPerceptualGamma);
151 toeStrength = Clamp01(toeStrength);
152 shoulderAngle = Clamp01(shoulderAngle);
153 shoulderStrength = Clamp(shoulderStrength, 1e-5f, 1f - 1e-5f);
154 shoulderLength = Max(0f, shoulderLength);
155 gamma = Max(1e-5f, gamma);
156 }
157
158 // Apply base params
159 {
160 // Toe goes from 0 to 0.5
161 float x0 = toeLength * 0.5f;
162 float y0 = (1f - toeStrength) * x0; // Lerp from 0 to x0
163
164 float remainingY = 1f - y0;
165
166 float initialW = x0 + remainingY;
167
168 float y1_offset = (1f - shoulderStrength) * remainingY;
169 float x1 = x0 + y1_offset;
170 float y1 = y0 + y1_offset;
171
172 // Filmic shoulder strength is in F stops
173 float extraW = Pow(2f, shoulderLength) - 1f;
174
175 float W = initialW + extraW;
176
177 dstParams.x0 = x0;
178 dstParams.y0 = y0;
179 dstParams.x1 = x1;
180 dstParams.y1 = y1;
181 dstParams.W = W;
182
183 // Bake the linear to gamma space conversion
184 dstParams.gamma = gamma;
185 }
186
187 dstParams.overshootX = (dstParams.W * 2f) * shoulderAngle * shoulderLength;
188 dstParams.overshootY = 0.5f * shoulderAngle * shoulderLength;
189
190 InitSegments(dstParams);
191 }
192
193 void InitSegments(DirectParams srcParams)
194 {
195 var paramsCopy = srcParams;
196
197 whitePoint = srcParams.W;
198 inverseWhitePoint = 1f / srcParams.W;
199
200 // normalize params to 1.0 range
201 paramsCopy.W = 1f;
202 paramsCopy.x0 /= srcParams.W;
203 paramsCopy.x1 /= srcParams.W;
204 paramsCopy.overshootX = srcParams.overshootX / srcParams.W;
205
206 float toeM = 0f;
207 float shoulderM = 0f;
208 {
209 float m, b;
210 AsSlopeIntercept(out m, out b, paramsCopy.x0, paramsCopy.x1, paramsCopy.y0, paramsCopy.y1);
211
212 float g = srcParams.gamma;
213
214 // Base function of linear section plus gamma is
215 // y = (mx+b)^g
216 //
217 // which we can rewrite as
218 // y = exp(g*ln(m) + g*ln(x+b/m))
219 //
220 // and our evaluation function is (skipping the if parts):
221 /*
222 float x0 = (x - offsetX) * scaleX;
223 y0 = exp(m_lnA + m_B*log(x0));
224 return y0*scaleY + m_offsetY;
225 */
226
227 var midSegment = segments[1];
228 midSegment.offsetX = -(b / m);
229 midSegment.offsetY = 0f;
230 midSegment.scaleX = 1f;
231 midSegment.scaleY = 1f;
232 midSegment.lnA = g * Log(m);
233 midSegment.B = g;
234
235 toeM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x0);
236 shoulderM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x1);
237
238 // apply gamma to endpoints
239 paramsCopy.y0 = Max(1e-5f, Pow(paramsCopy.y0, paramsCopy.gamma));
240 paramsCopy.y1 = Max(1e-5f, Pow(paramsCopy.y1, paramsCopy.gamma));
241
242 paramsCopy.overshootY = Pow(1f + paramsCopy.overshootY, paramsCopy.gamma) - 1f;
243 }
244
245 this.x0 = paramsCopy.x0;
246 this.x1 = paramsCopy.x1;
247
248 // Toe section
249 {
250 var toeSegment = segments[0];
251 toeSegment.offsetX = 0;
252 toeSegment.offsetY = 0f;
253 toeSegment.scaleX = 1f;
254 toeSegment.scaleY = 1f;
255
256 float lnA, B;
257 SolveAB(out lnA, out B, paramsCopy.x0, paramsCopy.y0, toeM);
258 toeSegment.lnA = lnA;
259 toeSegment.B = B;
260 }
261
262 // Shoulder section
263 {
264 // Use the simple version that is usually too flat
265 var shoulderSegment = segments[2];
266
267 float x0 = (1f + paramsCopy.overshootX) - paramsCopy.x1;
268 float y0 = (1f + paramsCopy.overshootY) - paramsCopy.y1;
269
270 float lnA, B;
271 SolveAB(out lnA, out B, x0, y0, shoulderM);
272
273 shoulderSegment.offsetX = (1f + paramsCopy.overshootX);
274 shoulderSegment.offsetY = (1f + paramsCopy.overshootY);
275
276 shoulderSegment.scaleX = -1f;
277 shoulderSegment.scaleY = -1f;
278 shoulderSegment.lnA = lnA;
279 shoulderSegment.B = B;
280 }
281
282 // Normalize so that we hit 1.0 at our white point. We wouldn't have do this if we
283 // skipped the overshoot part.
284 {
285 // Evaluate shoulder at the end of the curve
286 float scale = segments[2].Eval(1f);
287 float invScale = 1f / scale;
288
289 segments[0].offsetY *= invScale;
290 segments[0].scaleY *= invScale;
291
292 segments[1].offsetY *= invScale;
293 segments[1].scaleY *= invScale;
294
295 segments[2].offsetY *= invScale;
296 segments[2].scaleY *= invScale;
297 }
298 }
299
300 // Find a function of the form:
301 // f(x) = e^(lnA + Bln(x))
302 // where
303 // f(0) = 0; not really a constraint
304 // f(x0) = y0
305 // f'(x0) = m
306 void SolveAB(out float lnA, out float B, float x0, float y0, float m)
307 {
308 B = (m * x0) / y0;
309 lnA = Log(y0) - B * Log(x0);
310 }
311
312 // Convert to y=mx+b
313 void AsSlopeIntercept(out float m, out float b, float x0, float x1, float y0, float y1)
314 {
315 float dy = (y1 - y0);
316 float dx = (x1 - x0);
317
318 if (dx == 0)
319 m = 1f;
320 else
321 m = dy / dx;
322
323 b = y0 - x0 * m;
324 }
325
326 // f(x) = (mx+b)^g
327 // f'(x) = gm(mx+b)^(g-1)
328 float EvalDerivativeLinearGamma(float m, float b, float g, float x)
329 {
330 return g * m * Pow(m * x + b, g - 1f);
331 }
332
333 /// <summary>
334 /// An utility class to ease the binding of curve parameters to shaders.
335 /// </summary>
336 public class Uniforms
337 {
338 HableCurve parent;
339
340 internal Uniforms(HableCurve parent)
341 {
342 this.parent = parent;
343 }
344
345 /// <summary>
346 /// Main curve settings, stored as <c>(inverseWhitePoint, x0, x1, 0)</c>.
347 /// </summary>
348 public Vector4 curve => new Vector4(parent.inverseWhitePoint, parent.x0, parent.x1, 0f);
349
350 /// <summary>
351 /// Toe segment settings, stored as <c>(offsetX, offsetY, scaleX, scaleY)</c>.
352 /// </summary>
353 public Vector4 toeSegmentA => new Vector4(parent.segments[0].offsetX, parent.segments[0].offsetY, parent.segments[0].scaleX, parent.segments[0].scaleY);
354
355 /// <summary>
356 /// Toe segment settings, stored as <c>(ln1, B, 0, 0)</c>.
357 /// </summary>
358 public Vector4 toeSegmentB => new Vector4(parent.segments[0].lnA, parent.segments[0].B, 0f, 0f);
359
360 /// <summary>
361 /// Mid segment settings, stored as <c>(offsetX, offsetY, scaleX, scaleY)</c>.
362 /// </summary>
363 public Vector4 midSegmentA => new Vector4(parent.segments[1].offsetX, parent.segments[1].offsetY, parent.segments[1].scaleX, parent.segments[1].scaleY);
364
365 /// <summary>
366 /// Mid segment settings, stored as <c>(ln1, B, 0, 0)</c>.
367 /// </summary>
368 public Vector4 midSegmentB => new Vector4(parent.segments[1].lnA, parent.segments[1].B, 0f, 0f);
369
370 /// <summary>
371 /// Shoulder segment settings, stored as <c>(offsetX, offsetY, scaleX, scaleY)</c>.
372 /// </summary>
373 public Vector4 shoSegmentA => new Vector4(parent.segments[2].offsetX, parent.segments[2].offsetY, parent.segments[2].scaleX, parent.segments[2].scaleY);
374
375 /// <summary>
376 /// Shoulder segment settings, stored as <c>(ln1, B, 0, 0)</c>.
377 /// </summary>
378 public Vector4 shoSegmentB => new Vector4(parent.segments[2].lnA, parent.segments[2].B, 0f, 0f);
379 }
380
381 /// <summary>
382 /// An instance of the <see cref="Uniforms"/> utility class for this curve.
383 /// </summary>
384 public readonly Uniforms uniforms;
385 }
386}