1{ 2 coq, 3 mkCoqDerivation, 4 mathcomp, 5 mathcomp-bigenough, 6 lib, 7 version ? null, 8}: 9 10mkCoqDerivation { 11 12 namePrefix = [ 13 "coq" 14 "mathcomp" 15 ]; 16 pname = "real-closed"; 17 owner = "math-comp"; 18 inherit version; 19 release = { 20 "2.0.3".sha256 = "sha256-heZ7aZ7TO9YNAESIvbAc1qqzO91xMyLAox8VKueIk/s="; 21 "2.0.2".sha256 = "sha256-hBo9JMtmXDYBmf5ihKGksQLHv3c0+zDBnd8/aI2V/ao="; 22 "2.0.1".sha256 = "sha256-tQTI3PCl0q1vWpps28oATlzOI8TpVQh1jhTwVmhaZic="; 23 "2.0.0".sha256 = "sha256-sZvfiC5+5Lg4nRhfKKqyFzovCj2foAhqaq/w9F2bdU8="; 24 "1.1.4".sha256 = "sha256-8Hs6XfowbpeRD8RhMRf4ZJe2xf8kE0e8m7bPUzR/IM4="; 25 "1.1.3".sha256 = "1vwmmnzy8i4f203i2s60dn9i0kr27lsmwlqlyyzdpsghvbr8h5b7"; 26 "1.1.2".sha256 = "0907x4nf7nnvn764q3x9lx41g74rilvq5cki5ziwgpsdgb98pppn"; 27 "1.1.1".sha256 = "0ksjscrgq1i79vys4zrmgvzy2y4ylxa8wdsf4kih63apw6v5ws6b"; 28 "1.0.5".sha256 = "0q8nkxr9fba4naylr5xk7hfxsqzq2pvwlg1j0xxlhlgr3fmlavg2"; 29 "1.0.4".sha256 = "058v9dj973h9kfhqmvcy9a6xhhxzljr90cf99hdfcdx68fi2ha1b"; 30 "1.0.3".sha256 = "1xbzkzqgw5p42dx1liy6wy8lzdk39zwd6j14fwvv5735k660z7yb"; 31 "1.0.1".sha256 = "0j81gkjbza5vg89v4n9z598mfdbql416963rj4b8fzm7dp2r4rxg"; 32 }; 33 34 defaultVersion = 35 let 36 case = coq: mc: out: { 37 cases = [ 38 coq 39 mc 40 ]; 41 inherit out; 42 }; 43 in 44 with lib.versions; 45 lib.switch 46 [ coq.version mathcomp.version ] 47 [ 48 (case (range "8.18" "9.1") (isGe "2.2.0") "2.0.3") 49 (case (range "8.17" "9.0") (range "2.1.0" "2.3.0") "2.0.2") 50 (case (range "8.17" "8.20") (range "2.0.0" "2.2.0") "2.0.1") 51 (case (range "8.16" "8.19") (range "2.0.0" "2.2.0") "2.0.0") 52 (case (range "8.13" "8.19") (range "1.13.0" "1.19.0") "1.1.4") 53 (case (isGe "8.13") (range "1.12.0" "1.18.0") "1.1.3") 54 (case (isGe "8.10") (range "1.12.0" "1.18.0") "1.1.2") 55 (case (isGe "8.7") "1.11.0" "1.1.1") 56 (case (isGe "8.7") (range "1.9.0" "1.10.0") "1.0.4") 57 (case (isGe "8.7") "1.8.0" "1.0.3") 58 (case (isGe "8.7") "1.7.0" "1.0.1") 59 ] 60 null; 61 62 propagatedBuildInputs = [ 63 mathcomp.ssreflect 64 mathcomp.algebra 65 mathcomp.field 66 mathcomp.fingroup 67 mathcomp.solvable 68 mathcomp-bigenough 69 ]; 70 71 meta = { 72 description = "Mathematical Components Library on real closed fields"; 73 license = lib.licenses.cecill-c; 74 }; 75}