at 25.11-pre 1.6 kB view raw
1{ 2 lib, 3 buildPythonPackage, 4 fetchFromGitHub, 5 6 # dependencies 7 networkx, 8 numpy, 9 scipy, 10 scikit-learn, 11 pandas, 12 pyparsing, 13 torch, 14 statsmodels, 15 tqdm, 16 joblib, 17 opt-einsum, 18 xgboost, 19 google-generativeai, 20 21 # tests 22 pytestCheckHook, 23 pytest-cov-stub, 24 coverage, 25 mock, 26 black, 27}: 28buildPythonPackage rec { 29 pname = "pgmpy"; 30 version = "0.1.26"; 31 pyproject = true; 32 33 src = fetchFromGitHub { 34 owner = "pgmpy"; 35 repo = "pgmpy"; 36 tag = "v${version}"; 37 hash = "sha256-RusVREhEXYaJuQXTaCQ7EJgbo4+wLB3wXXCAc3sBGtU="; 38 }; 39 40 dependencies = [ 41 networkx 42 numpy 43 scipy 44 scikit-learn 45 pandas 46 pyparsing 47 torch 48 statsmodels 49 tqdm 50 joblib 51 opt-einsum 52 xgboost 53 google-generativeai 54 ]; 55 56 disabledTests = [ 57 # flaky: 58 # AssertionError: -45.78899127622197 != -45.788991276221964 59 "test_score" 60 61 # self.assertTrue(np.isclose(coef, dep_coefs[i], atol=1e-4)) 62 # AssertionError: False is not true 63 "test_pillai" 64 65 # requires optional dependency daft 66 "test_to_daft" 67 ]; 68 69 nativeCheckInputs = [ 70 pytestCheckHook 71 # xdoctest 72 pytest-cov-stub 73 coverage 74 mock 75 black 76 ]; 77 78 meta = { 79 description = "Python Library for learning (Structure and Parameter), inference (Probabilistic and Causal), and simulations in Bayesian Networks"; 80 homepage = "https://github.com/pgmpy/pgmpy"; 81 changelog = "https://github.com/pgmpy/pgmpy/releases/tag/v${version}"; 82 license = lib.licenses.mit; 83 maintainers = with lib.maintainers; [ happysalada ]; 84 }; 85}