at 24.05-pre 1.4 kB view raw
1{ lib 2, buildPythonPackage 3, fetchFromGitHub 4, pythonOlder 5# build inputs 6, networkx 7, numpy 8, scipy 9, scikit-learn 10, pandas 11, pyparsing 12, torch 13, statsmodels 14, tqdm 15, joblib 16, opt-einsum 17# check inputs 18, pytestCheckHook 19, pytest-cov 20, coverage 21, mock 22, black 23}: 24let 25 pname = "pgmpy"; 26 version = "0.1.24"; 27 # optional-dependencies = { 28 # all = [ daft ]; 29 # }; 30in 31buildPythonPackage { 32 inherit pname version; 33 format = "setuptools"; 34 35 disabled = pythonOlder "3.7"; 36 37 src = fetchFromGitHub { 38 owner = "pgmpy"; 39 repo = pname; 40 rev = "refs/tags/v${version}"; 41 hash = "sha256-IMlo4SBxO9sPoZl0rQGc3FcvvIN/V/WZz+1BD7aBfzs="; 42 }; 43 44 propagatedBuildInputs = [ 45 networkx 46 numpy 47 scipy 48 scikit-learn 49 pandas 50 pyparsing 51 torch 52 statsmodels 53 tqdm 54 joblib 55 opt-einsum 56 ]; 57 58 disabledTests = [ 59 "test_to_daft" # requires optional dependency daft 60 ]; 61 62 nativeCheckInputs = [ 63 pytestCheckHook 64 # xdoctest 65 pytest-cov 66 coverage 67 mock 68 black 69 ]; 70 71 meta = with lib; { 72 description = "Python Library for learning (Structure and Parameter), inference (Probabilistic and Causal), and simulations in Bayesian Networks"; 73 homepage = "https://github.com/pgmpy/pgmpy"; 74 changelog = "https://github.com/pgmpy/pgmpy/releases/tag/v${version}"; 75 license = licenses.mit; 76 maintainers = with maintainers; [ happysalada ]; 77 }; 78}