1{ lib 2, buildPythonPackage 3, fetchFromGitHub 4, numba 5, numpy 6, pytestCheckHook 7, pythonOlder 8, torchvision 9, scikit-learn 10, scipy 11, setuptools 12, tqdm 13}: 14 15buildPythonPackage rec { 16 pname = "apricot-select"; 17 version = "0.6.1"; 18 pyproject = true; 19 20 disabled = pythonOlder "3.7"; 21 22 src = fetchFromGitHub { 23 owner = "jmschrei"; 24 repo = "apricot"; 25 rev = "refs/tags/${version}"; 26 hash = "sha256-v9BHFxmlbwXVipPze/nV35YijdFBuka3gAl85AlsffQ="; 27 }; 28 29 nativeBuildInputs = [ 30 setuptools 31 ]; 32 33 propagatedBuildInputs = [ 34 numba 35 numpy 36 scipy 37 tqdm 38 ]; 39 40 nativeCheckInputs = [ 41 pytestCheckHook 42 torchvision 43 scikit-learn 44 ]; 45 46 pythonImportsCheck = [ 47 "apricot" 48 ]; 49 50 disabledTestPaths = [ 51 # Tests require nose 52 "tests/test_optimizers/test_knapsack_facility_location.py" 53 "tests/test_optimizers/test_knapsack_feature_based.py" 54 ]; 55 56 meta = with lib; { 57 description = "Module for submodular optimization for the purpose of selecting subsets of massive data sets"; 58 homepage = "https://github.com/jmschrei/apricot"; 59 changelog = "https://github.com/jmschrei/apricot/releases/tag/${version}"; 60 license = licenses.mit; 61 maintainers = with maintainers; [ fab ]; 62 }; 63}