1{ stdenv, lib, fetchFromGitHub, buildPythonPackage, python, 2 cudaSupport ? false, cudatoolkit, cudnn, nccl, magma, 3 mklDnnSupport ? true, useSystemNccl ? true, 4 MPISupport ? false, mpi, 5 buildDocs ? false, 6 cudaArchList ? null, 7 8 # Native build inputs 9 cmake, util-linux, linkFarm, symlinkJoin, which, pybind11, 10 11 # Build inputs 12 numactl, 13 14 # Propagated build inputs 15 dataclasses, numpy, pyyaml, cffi, click, typing-extensions, 16 17 # Unit tests 18 hypothesis, psutil, 19 20 # virtual pkg that consistently instantiates blas across nixpkgs 21 # See https://github.com/NixOS/nixpkgs/pull/83888 22 blas, 23 24 # ninja (https://ninja-build.org) must be available to run C++ extensions tests, 25 ninja, 26 27 # dependencies for torch.utils.tensorboard 28 pillow, six, future, tensorflow-tensorboard, protobuf, 29 30 isPy3k, pythonOlder }: 31 32# assert that everything needed for cuda is present and that the correct cuda versions are used 33assert !cudaSupport || (let majorIs = lib.versions.major cudatoolkit.version; 34 in majorIs == "9" || majorIs == "10" || majorIs == "11"); 35 36# confirm that cudatoolkits are sync'd across dependencies 37assert !(MPISupport && cudaSupport) || mpi.cudatoolkit == cudatoolkit; 38assert !cudaSupport || magma.cudatoolkit == cudatoolkit; 39 40let 41 setBool = v: if v then "1" else "0"; 42 cudatoolkit_joined = symlinkJoin { 43 name = "${cudatoolkit.name}-unsplit"; 44 # nccl is here purely for semantic grouping it could be moved to nativeBuildInputs 45 paths = [ cudatoolkit.out cudatoolkit.lib nccl.dev nccl.out ]; 46 }; 47 48 # Give an explicit list of supported architectures for the build, See: 49 # - pytorch bug report: https://github.com/pytorch/pytorch/issues/23573 50 # - pytorch-1.2.0 build on nixpks: https://github.com/NixOS/nixpkgs/pull/65041 51 # 52 # This list was selected by omitting the TORCH_CUDA_ARCH_LIST parameter, 53 # observing the fallback option (which selected all architectures known 54 # from cudatoolkit_10_0, pytorch-1.2, and python-3.6), and doing a binary 55 # searching to find offending architectures. 56 # 57 # NOTE: Because of sandboxing, this derivation can't auto-detect the hardware's 58 # cuda architecture, so there is also now a problem around new architectures 59 # not being supported until explicitly added to this derivation. 60 # 61 # FIXME: CMake is throwing the following warning on python-1.2: 62 # 63 # ``` 64 # CMake Warning at cmake/public/utils.cmake:172 (message): 65 # In the future we will require one to explicitly pass TORCH_CUDA_ARCH_LIST 66 # to cmake instead of implicitly setting it as an env variable. This will 67 # become a FATAL_ERROR in future version of pytorch. 68 # ``` 69 # If this is causing problems for your build, this derivation may have to strip 70 # away the standard `buildPythonPackage` and use the 71 # [*Adjust Build Options*](https://github.com/pytorch/pytorch/tree/v1.2.0#adjust-build-options-optional) 72 # instructions. This will also add more flexibility around configurations 73 # (allowing FBGEMM to be built in pytorch-1.1), and may future proof this 74 # derivation. 75 brokenArchs = [ "3.0" ]; # this variable is only used as documentation. 76 77 cudaCapabilities = rec { 78 cuda9 = [ 79 "3.5" 80 "5.0" 81 "5.2" 82 "6.0" 83 "6.1" 84 "7.0" 85 "7.0+PTX" # I am getting a "undefined architecture compute_75" on cuda 9 86 # which leads me to believe this is the final cuda-9-compatible architecture. 87 ]; 88 89 cuda10 = cuda9 ++ [ 90 "7.5" 91 "7.5+PTX" # < most recent architecture as of cudatoolkit_10_0 and pytorch-1.2.0 92 ]; 93 94 cuda11 = cuda10 ++ [ 95 "8.0" 96 "8.0+PTX" # < CUDA toolkit 11.0 97 "8.6" 98 "8.6+PTX" # < CUDA toolkit 11.1 99 ]; 100 }; 101 final_cudaArchList = 102 if !cudaSupport || cudaArchList != null 103 then cudaArchList 104 else cudaCapabilities."cuda${lib.versions.major cudatoolkit.version}"; 105 106 # Normally libcuda.so.1 is provided at runtime by nvidia-x11 via 107 # LD_LIBRARY_PATH=/run/opengl-driver/lib. We only use the stub 108 # libcuda.so from cudatoolkit for running tests, so that we don’t have 109 # to recompile pytorch on every update to nvidia-x11 or the kernel. 110 cudaStub = linkFarm "cuda-stub" [{ 111 name = "libcuda.so.1"; 112 path = "${cudatoolkit}/lib/stubs/libcuda.so"; 113 }]; 114 cudaStubEnv = lib.optionalString cudaSupport 115 "LD_LIBRARY_PATH=${cudaStub}\${LD_LIBRARY_PATH:+:}$LD_LIBRARY_PATH "; 116 117in buildPythonPackage rec { 118 pname = "pytorch"; 119 # Don't forget to update pytorch-bin to the same version. 120 version = "1.9.0"; 121 122 disabled = !isPy3k; 123 124 outputs = [ 125 "out" # output standard python package 126 "dev" # output libtorch headers 127 "lib" # output libtorch libraries 128 ]; 129 130 src = fetchFromGitHub { 131 owner = "pytorch"; 132 repo = "pytorch"; 133 rev = "v${version}"; 134 fetchSubmodules = true; 135 sha256 = "sha256-gZmEhV1zzfr/5T2uNfS+8knzyJIxnv2COWVyiAzU9jM="; 136 }; 137 138 patches = lib.optionals stdenv.isDarwin [ 139 # pthreadpool added support for Grand Central Dispatch in April 140 # 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO) 141 # that is available starting with macOS 10.13. However, our current 142 # base is 10.12. Until we upgrade, we can fall back on the older 143 # pthread support. 144 ./pthreadpool-disable-gcd.diff 145 ]; 146 147 # The dataclasses module is included with Python >= 3.7. This should 148 # be fixed with the next PyTorch release. 149 postPatch = '' 150 substituteInPlace setup.py \ 151 --replace "'dataclasses'" "'dataclasses; python_version < \"3.7\"'" 152 ''; 153 154 preConfigure = lib.optionalString cudaSupport '' 155 export TORCH_CUDA_ARCH_LIST="${lib.strings.concatStringsSep ";" final_cudaArchList}" 156 export CC=${cudatoolkit.cc}/bin/gcc CXX=${cudatoolkit.cc}/bin/g++ 157 '' + lib.optionalString (cudaSupport && cudnn != null) '' 158 export CUDNN_INCLUDE_DIR=${cudnn}/include 159 ''; 160 161 # Use pytorch's custom configurations 162 dontUseCmakeConfigure = true; 163 164 BUILD_NAMEDTENSOR = setBool true; 165 BUILD_DOCS = setBool buildDocs; 166 167 # We only do an imports check, so do not build tests either. 168 BUILD_TEST = setBool false; 169 170 # Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for 171 # it by default. PyTorch currently uses its own vendored version 172 # of oneDNN through Intel iDeep. 173 USE_MKLDNN = setBool mklDnnSupport; 174 USE_MKLDNN_CBLAS = setBool mklDnnSupport; 175 176 preBuild = '' 177 export MAX_JOBS=$NIX_BUILD_CORES 178 ${python.interpreter} setup.py build --cmake-only 179 ${cmake}/bin/cmake build 180 ''; 181 182 preFixup = '' 183 function join_by { local IFS="$1"; shift; echo "$*"; } 184 function strip2 { 185 IFS=':' 186 read -ra RP <<< $(patchelf --print-rpath $1) 187 IFS=' ' 188 RP_NEW=$(join_by : ''${RP[@]:2}) 189 patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1" 190 } 191 for f in $(find ''${out} -name 'libcaffe2*.so') 192 do 193 strip2 $f 194 done 195 ''; 196 197 # Override the (weirdly) wrong version set by default. See 198 # https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038 199 # https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267 200 PYTORCH_BUILD_VERSION = version; 201 PYTORCH_BUILD_NUMBER = 0; 202 203 USE_SYSTEM_NCCL=setBool useSystemNccl; # don't build pytorch's third_party NCCL 204 205 # Suppress a weird warning in mkl-dnn, part of ideep in pytorch 206 # (upstream seems to have fixed this in the wrong place?) 207 # https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc 208 # https://github.com/pytorch/pytorch/issues/22346 209 # 210 # Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++: 211 # https://github.com/pytorch/pytorch/blob/v1.2.0/setup.py#L17 212 NIX_CFLAGS_COMPILE = lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ]; 213 214 nativeBuildInputs = [ 215 cmake 216 util-linux 217 which 218 ninja 219 pybind11 220 ] ++ lib.optionals cudaSupport [ cudatoolkit_joined ]; 221 222 buildInputs = [ blas blas.provider ] 223 ++ lib.optionals cudaSupport [ cudnn magma nccl ] 224 ++ lib.optionals stdenv.isLinux [ numactl ]; 225 226 propagatedBuildInputs = [ 227 cffi 228 click 229 numpy 230 pyyaml 231 typing-extensions 232 # the following are required for tensorboard support 233 pillow six future tensorflow-tensorboard protobuf 234 ] ++ lib.optionals MPISupport [ mpi ] 235 ++ lib.optionals (pythonOlder "3.7") [ dataclasses ]; 236 237 checkInputs = [ hypothesis ninja psutil ]; 238 239 # Tests take a long time and may be flaky, so just sanity-check imports 240 doCheck = false; 241 pythonImportsCheck = [ 242 "torch" 243 ]; 244 245 checkPhase = with lib.versions; with lib.strings; concatStringsSep " " [ 246 cudaStubEnv 247 "${python.interpreter} test/run_test.py" 248 "--exclude" 249 (concatStringsSep " " [ 250 "utils" # utils requires git, which is not allowed in the check phase 251 252 # "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors 253 # ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build 254 255 # tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins 256 (optionalString (majorMinor version == "1.3" ) "tensorboard") 257 ]) 258 ]; 259 postInstall = '' 260 mkdir $dev 261 cp -r $out/${python.sitePackages}/torch/include $dev/include 262 cp -r $out/${python.sitePackages}/torch/share $dev/share 263 264 # Fix up library paths for split outputs 265 substituteInPlace \ 266 $dev/share/cmake/Torch/TorchConfig.cmake \ 267 --replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib" 268 269 substituteInPlace \ 270 $dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \ 271 --replace \''${_IMPORT_PREFIX}/lib "$lib/lib" 272 273 mkdir $lib 274 cp -r $out/${python.sitePackages}/torch/lib $lib/lib 275 ''; 276 277 postFixup = lib.optionalString stdenv.isDarwin '' 278 for f in $(ls $lib/lib/*.dylib); do 279 install_name_tool -id $lib/lib/$(basename $f) $f || true 280 done 281 282 install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib 283 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib 284 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib 285 286 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib 287 288 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_observers.dylib 289 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_observers.dylib 290 291 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_module_test_dynamic.dylib 292 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_module_test_dynamic.dylib 293 294 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libcaffe2_detectron_ops.dylib 295 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libcaffe2_detectron_ops.dylib 296 297 install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib 298 install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib 299 ''; 300 301 # Builds in 2+h with 2 cores, and ~15m with a big-parallel builder. 302 requiredSystemFeatures = [ "big-parallel" ]; 303 304 passthru = { 305 inherit cudaSupport; 306 cudaArchList = final_cudaArchList; 307 # At least for 1.9.0 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability. 308 blasProvider = blas.provider; 309 }; 310 311 meta = with lib; { 312 description = "Open source, prototype-to-production deep learning platform"; 313 homepage = "https://pytorch.org/"; 314 license = licenses.bsd3; 315 platforms = with platforms; linux ++ lib.optionals (!cudaSupport) darwin; 316 maintainers = with maintainers; [ teh thoughtpolice tscholak ]; # tscholak esp. for darwin-related builds 317 # error: use of undeclared identifier 'noU'; did you mean 'no'? 318 broken = stdenv.isDarwin; 319 }; 320}