// Copyright 2018 The CUE Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math import ( "math" "github.com/cockroachdb/apd/v3" "cuelang.org/go/internal" ) // Abs returns the absolute value of x. // // Special case: Abs(±Inf) = +Inf func Abs(x *internal.Decimal) (*internal.Decimal, error) { var d internal.Decimal _, err := internal.BaseContext.Abs(&d, x) return &d, err } // Acosh returns the inverse hyperbolic cosine of x. // // Special cases are: // // Acosh(+Inf) = +Inf // Acosh(x) = NaN if x < 1 // Acosh(NaN) = NaN func Acosh(x float64) float64 { return math.Acosh(x) } // Asin returns the arcsine, in radians, of x. // // Special cases are: // // Asin(±0) = ±0 // Asin(x) = NaN if x < -1 or x > 1 func Asin(x float64) float64 { return math.Asin(x) } // Acos returns the arccosine, in radians, of x. // // Special case is: // // Acos(x) = NaN if x < -1 or x > 1 func Acos(x float64) float64 { return math.Acos(x) } // Asinh returns the inverse hyperbolic sine of x. // // Special cases are: // // Asinh(±0) = ±0 // Asinh(±Inf) = ±Inf // Asinh(NaN) = NaN func Asinh(x float64) float64 { return math.Asinh(x) } // Atan returns the arctangent, in radians, of x. // // Special cases are: // // Atan(±0) = ±0 // Atan(±Inf) = ±Pi/2 func Atan(x float64) float64 { return math.Atan(x) } // Atan2 returns the arc tangent of y/x, using // the signs of the two to determine the quadrant // of the return value. // // Special cases are (in order): // // Atan2(y, NaN) = NaN // Atan2(NaN, x) = NaN // Atan2(+0, x>=0) = +0 // Atan2(-0, x>=0) = -0 // Atan2(+0, x<=-0) = +Pi // Atan2(-0, x<=-0) = -Pi // Atan2(y>0, 0) = +Pi/2 // Atan2(y<0, 0) = -Pi/2 // Atan2(+Inf, +Inf) = +Pi/4 // Atan2(-Inf, +Inf) = -Pi/4 // Atan2(+Inf, -Inf) = 3Pi/4 // Atan2(-Inf, -Inf) = -3Pi/4 // Atan2(y, +Inf) = 0 // Atan2(y>0, -Inf) = +Pi // Atan2(y<0, -Inf) = -Pi // Atan2(+Inf, x) = +Pi/2 // Atan2(-Inf, x) = -Pi/2 func Atan2(y, x float64) float64 { return math.Atan2(y, x) } // Atanh returns the inverse hyperbolic tangent of x. // // Special cases are: // // Atanh(1) = +Inf // Atanh(±0) = ±0 // Atanh(-1) = -Inf // Atanh(x) = NaN if x < -1 or x > 1 // Atanh(NaN) = NaN func Atanh(x float64) float64 { return math.Atanh(x) } // Cbrt returns the cube root of x. // // Special cases are: // // Cbrt(±0) = ±0 // Cbrt(±Inf) = ±Inf // Cbrt(NaN) = NaN func Cbrt(x *internal.Decimal) (*internal.Decimal, error) { var d internal.Decimal _, err := internal.BaseContext.Cbrt(&d, x) return &d, err } // Mathematical constants. const ( E = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113 Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796 Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622 Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193 SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774 SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161 SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339 Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162 Log2E = 1 / Ln2 Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392 Log10E = 1 / Ln10 ) // Copysign returns a value with the magnitude // of x and the sign of y. func Copysign(x, y *internal.Decimal) *internal.Decimal { var d internal.Decimal d.Set(x) d.Negative = y.Negative return &d } var zero = apd.New(0, 0) // Dim returns the maximum of x-y or 0. // // Special cases are: // // Dim(+Inf, +Inf) = NaN // Dim(-Inf, -Inf) = NaN // Dim(x, NaN) = Dim(NaN, x) = NaN func Dim(x, y *internal.Decimal) (*internal.Decimal, error) { var d internal.Decimal _, err := internal.BaseContext.Sub(&d, x, y) if err != nil { return nil, err } if d.Negative { return zero, nil } return &d, nil } // Erf returns the error function of x. // // Special cases are: // // Erf(+Inf) = 1 // Erf(-Inf) = -1 // Erf(NaN) = NaN func Erf(x float64) float64 { return math.Erf(x) } // Erfc returns the complementary error function of x. // // Special cases are: // // Erfc(+Inf) = 0 // Erfc(-Inf) = 2 // Erfc(NaN) = NaN func Erfc(x float64) float64 { return math.Erfc(x) } // Erfinv returns the inverse error function of x. // // Special cases are: // // Erfinv(1) = +Inf // Erfinv(-1) = -Inf // Erfinv(x) = NaN if x < -1 or x > 1 // Erfinv(NaN) = NaN func Erfinv(x float64) float64 { return math.Erfinv(x) } // Erfcinv returns the inverse of Erfc(x). // // Special cases are: // // Erfcinv(0) = +Inf // Erfcinv(2) = -Inf // Erfcinv(x) = NaN if x < 0 or x > 2 // Erfcinv(NaN) = NaN func Erfcinv(x float64) float64 { return math.Erfcinv(x) } // Exp returns e**x, the base-e exponential of x. // // Special cases are: // // Exp(+Inf) = +Inf // Exp(NaN) = NaN // // Very large values overflow to 0 or +Inf. // Very small values underflow to 1. func Exp(x *internal.Decimal) (*internal.Decimal, error) { var d internal.Decimal _, err := internal.BaseContext.Exp(&d, x) return &d, err } var two = apd.New(2, 0) // Exp2 returns 2**x, the base-2 exponential of x. // // Special cases are the same as Exp. func Exp2(x *internal.Decimal) (*internal.Decimal, error) { var d internal.Decimal _, err := internal.BaseContext.Pow(&d, two, x) return &d, err } // Expm1 returns e**x - 1, the base-e exponential of x minus 1. // It is more accurate than Exp(x) - 1 when x is near zero. // // Special cases are: // // Expm1(+Inf) = +Inf // Expm1(-Inf) = -1 // Expm1(NaN) = NaN // // Very large values overflow to -1 or +Inf. func Expm1(x float64) float64 { return math.Expm1(x) } // Gamma returns the Gamma function of x. // // Special cases are: // // Gamma(+Inf) = +Inf // Gamma(+0) = +Inf // Gamma(-0) = -Inf // Gamma(x) = NaN for integer x < 0 // Gamma(-Inf) = NaN // Gamma(NaN) = NaN func Gamma(x float64) float64 { return math.Gamma(x) } // Hypot returns Sqrt(p*p + q*q), taking care to avoid // unnecessary overflow and underflow. // // Special cases are: // // Hypot(±Inf, q) = +Inf // Hypot(p, ±Inf) = +Inf // Hypot(NaN, q) = NaN // Hypot(p, NaN) = NaN func Hypot(p, q float64) float64 { return math.Hypot(p, q) } // J0 returns the order-zero Bessel function of the first kind. // // Special cases are: // // J0(±Inf) = 0 // J0(0) = 1 // J0(NaN) = NaN func J0(x float64) float64 { return math.J0(x) } // Y0 returns the order-zero Bessel function of the second kind. // // Special cases are: // // Y0(+Inf) = 0 // Y0(0) = -Inf // Y0(x < 0) = NaN // Y0(NaN) = NaN func Y0(x float64) float64 { return math.Y0(x) } // J1 returns the order-one Bessel function of the first kind. // // Special cases are: // // J1(±Inf) = 0 // J1(NaN) = NaN func J1(x float64) float64 { return math.J1(x) } // Y1 returns the order-one Bessel function of the second kind. // // Special cases are: // // Y1(+Inf) = 0 // Y1(0) = -Inf // Y1(x < 0) = NaN // Y1(NaN) = NaN func Y1(x float64) float64 { return math.Y1(x) } // Jn returns the order-n Bessel function of the first kind. // // Special cases are: // // Jn(n, ±Inf) = 0 // Jn(n, NaN) = NaN func Jn(n int, x float64) float64 { return math.Jn(n, x) } // Yn returns the order-n Bessel function of the second kind. // // Special cases are: // // Yn(n, +Inf) = 0 // Yn(n ≥ 0, 0) = -Inf // Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even // Yn(n, x < 0) = NaN // Yn(n, NaN) = NaN func Yn(n int, x float64) float64 { return math.Yn(n, x) } // Ldexp is the inverse of Frexp. // It returns frac × 2**exp. // // Special cases are: // // Ldexp(±0, exp) = ±0 // Ldexp(±Inf, exp) = ±Inf // Ldexp(NaN, exp) = NaN func Ldexp(frac float64, exp int) float64 { return math.Ldexp(frac, exp) } // Log returns the natural logarithm of x. // // Special cases are: // // Log(+Inf) = +Inf // Log(0) = -Inf // Log(x < 0) = NaN // Log(NaN) = NaN func Log(x *internal.Decimal) (*internal.Decimal, error) { var d internal.Decimal _, err := internal.BaseContext.Ln(&d, x) return &d, err } // Log10 returns the decimal logarithm of x. // The special cases are the same as for Log. func Log10(x *internal.Decimal) (*internal.Decimal, error) { var d internal.Decimal _, err := internal.BaseContext.Log10(&d, x) return &d, err } // Log2 returns the binary logarithm of x. // The special cases are the same as for Log. func Log2(x *internal.Decimal) (*internal.Decimal, error) { var d, ln2 internal.Decimal _, _ = internal.BaseContext.Ln(&ln2, two) _, err := internal.BaseContext.Ln(&d, x) if err != nil { return &d, err } _, err = internal.BaseContext.Quo(&d, &d, &ln2) return &d, err } // Log1p returns the natural logarithm of 1 plus its argument x. // It is more accurate than Log(1 + x) when x is near zero. // // Special cases are: // // Log1p(+Inf) = +Inf // Log1p(±0) = ±0 // Log1p(-1) = -Inf // Log1p(x < -1) = NaN // Log1p(NaN) = NaN func Log1p(x float64) float64 { return math.Log1p(x) } // Logb returns the binary exponent of x. // // Special cases are: // // Logb(±Inf) = +Inf // Logb(0) = -Inf // Logb(NaN) = NaN func Logb(x float64) float64 { return math.Logb(x) } // Ilogb returns the binary exponent of x as an integer. // // Special cases are: // // Ilogb(±Inf) = MaxInt32 // Ilogb(0) = MinInt32 // Ilogb(NaN) = MaxInt32 func Ilogb(x float64) int { return math.Ilogb(x) } // Mod returns the floating-point remainder of x/y. // The magnitude of the result is less than y and its // sign agrees with that of x. // // Special cases are: // // Mod(±Inf, y) = NaN // Mod(NaN, y) = NaN // Mod(x, 0) = NaN // Mod(x, ±Inf) = x // Mod(x, NaN) = NaN func Mod(x, y float64) float64 { return math.Mod(x, y) } // Pow returns x**y, the base-x exponential of y. // // Special cases are (in order): // // Pow(x, ±0) = 1 for any x // Pow(1, y) = 1 for any y // Pow(x, 1) = x for any x // Pow(NaN, y) = NaN // Pow(x, NaN) = NaN // Pow(±0, y) = ±Inf for y an odd integer < 0 // Pow(±0, -Inf) = +Inf // Pow(±0, +Inf) = +0 // Pow(±0, y) = +Inf for finite y < 0 and not an odd integer // Pow(±0, y) = ±0 for y an odd integer > 0 // Pow(±0, y) = +0 for finite y > 0 and not an odd integer // Pow(-1, ±Inf) = 1 // Pow(x, +Inf) = +Inf for |x| > 1 // Pow(x, -Inf) = +0 for |x| > 1 // Pow(x, +Inf) = +0 for |x| < 1 // Pow(x, -Inf) = +Inf for |x| < 1 // Pow(+Inf, y) = +Inf for y > 0 // Pow(+Inf, y) = +0 for y < 0 // Pow(-Inf, y) = Pow(-0, -y) // Pow(x, y) = NaN for finite x < 0 and finite non-integer y func Pow(x, y *internal.Decimal) (*internal.Decimal, error) { var d internal.Decimal _, err := internal.BaseContext.Pow(&d, x, y) return &d, err } // Pow10 returns 10**n, the base-10 exponential of n. func Pow10(n int32) *internal.Decimal { return apd.New(1, n) } // Remainder returns the IEEE 754 floating-point remainder of x/y. // // Special cases are: // // Remainder(±Inf, y) = NaN // Remainder(NaN, y) = NaN // Remainder(x, 0) = NaN // Remainder(x, ±Inf) = x // Remainder(x, NaN) = NaN func Remainder(x, y float64) float64 { return math.Remainder(x, y) } // Signbit reports whether x is negative or negative zero. func Signbit(x *internal.Decimal) bool { return x.Negative } // Cos returns the cosine of the radian argument x. // // Special cases are: // // Cos(±Inf) = NaN // Cos(NaN) = NaN func Cos(x float64) float64 { return math.Cos(x) } // Sin returns the sine of the radian argument x. // // Special cases are: // // Sin(±0) = ±0 // Sin(±Inf) = NaN // Sin(NaN) = NaN func Sin(x float64) float64 { return math.Sin(x) } // Sinh returns the hyperbolic sine of x. // // Special cases are: // // Sinh(±0) = ±0 // Sinh(±Inf) = ±Inf // Sinh(NaN) = NaN func Sinh(x float64) float64 { return math.Sinh(x) } // Cosh returns the hyperbolic cosine of x. // // Special cases are: // // Cosh(±0) = 1 // Cosh(±Inf) = +Inf // Cosh(NaN) = NaN func Cosh(x float64) float64 { return math.Cosh(x) } // Sqrt returns the square root of x. // // Special cases are: // // Sqrt(+Inf) = +Inf // Sqrt(±0) = ±0 // Sqrt(x < 0) = NaN // Sqrt(NaN) = NaN func Sqrt(x float64) float64 { return math.Sqrt(x) } // Tan returns the tangent of the radian argument x. // // Special cases are: // // Tan(±0) = ±0 // Tan(±Inf) = NaN // Tan(NaN) = NaN func Tan(x float64) float64 { return math.Tan(x) } // Tanh returns the hyperbolic tangent of x. // // Special cases are: // // Tanh(±0) = ±0 // Tanh(±Inf) = ±1 // Tanh(NaN) = NaN func Tanh(x float64) float64 { return math.Tanh(x) }