Fork of Poseidon providing Bukkit #1060 to older Beta versions (b1.0-b1.7.3)
at develop 499 lines 19 kB view raw
1package org.bukkit.util.noise; 2 3import org.bukkit.World; 4 5import java.util.Random; 6 7/** 8 * Generates simplex-based noise. 9 * <p> 10 * This is a modified version of the freely published version in the paper by 11 * Stefan Gustavson at http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf 12 */ 13public class SimplexNoiseGenerator extends PerlinNoiseGenerator { 14 protected static final double SQRT_3 = Math.sqrt(3); 15 protected static final double SQRT_5 = Math.sqrt(5); 16 protected static final double F2 = 0.5 * (SQRT_3 - 1); 17 protected static final double G2 = (3 - SQRT_3) / 6; 18 protected static final double G22 = G2 * 2.0 - 1; 19 protected static final double F3 = 1.0 / 3.0; 20 protected static final double G3 = 1.0 / 6.0; 21 protected static final double F4 = (SQRT_5 - 1.0) / 4.0; 22 protected static final double G4 = (5.0 - SQRT_5) / 20.0; 23 protected static final double G42 = G4 * 2.0; 24 protected static final double G43 = G4 * 3.0; 25 protected static final double G44 = G4 * 4.0 - 1.0; 26 protected static final int grad4[][] = { { 0, 1, 1, 1 }, { 0, 1, 1, -1 }, { 0, 1, -1, 1 }, { 0, 1, -1, -1 }, { 0, -1, 1, 1 }, { 0, -1, 1, -1 }, { 0, -1, -1, 1 }, { 0, -1, -1, -1 }, { 1, 0, 1, 1 }, { 1, 0, 1, -1 }, { 1, 0, -1, 1 }, { 1, 0, -1, -1 }, { -1, 0, 1, 1 }, { -1, 0, 1, -1 }, { -1, 0, -1, 1 }, { -1, 0, -1, -1 }, { 1, 1, 0, 1 }, { 1, 1, 0, -1 }, { 1, -1, 0, 1 }, { 1, -1, 0, -1 }, { -1, 1, 0, 1 }, { -1, 1, 0, -1 }, { -1, -1, 0, 1 }, { -1, -1, 0, -1 }, { 1, 1, 1, 0 }, { 1, 1, -1, 0 }, { 1, -1, 1, 0 }, { 1, -1, -1, 0 }, { -1, 1, 1, 0 }, { -1, 1, -1, 0 }, { -1, -1, 1, 0 }, { -1, -1, -1, 0 } }; 27 protected static final int simplex[][] = { { 0, 1, 2, 3 }, { 0, 1, 3, 2 }, { 0, 0, 0, 0 }, { 0, 2, 3, 1 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 1, 2, 3, 0 }, { 0, 2, 1, 3 }, { 0, 0, 0, 0 }, { 0, 3, 1, 2 }, { 0, 3, 2, 1 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 1, 3, 2, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 1, 2, 0, 3 }, { 0, 0, 0, 0 }, { 1, 3, 0, 2 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 2, 3, 0, 1 }, { 2, 3, 1, 0 }, { 1, 0, 2, 3 }, { 1, 0, 3, 2 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 2, 0, 3, 1 }, { 0, 0, 0, 0 }, { 2, 1, 3, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 2, 0, 1, 3 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 3, 0, 1, 2 }, { 3, 0, 2, 1 }, { 0, 0, 0, 0 }, { 3, 1, 2, 0 }, { 2, 1, 0, 3 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 3, 1, 0, 2 }, { 0, 0, 0, 0 }, { 3, 2, 0, 1 }, { 3, 2, 1, 0 } }; 28 protected static double offsetW; 29 private static final SimplexNoiseGenerator instance = new SimplexNoiseGenerator(); 30 31 protected SimplexNoiseGenerator() { 32 super(); 33 } 34 35 /** 36 * Creates a seeded simplex noise generator for the given world 37 * 38 * @param world World to construct this generator for 39 */ 40 public SimplexNoiseGenerator(World world) { 41 this(new Random(world.getSeed())); 42 } 43 44 /** 45 * Creates a seeded simplex noise generator for the given seed 46 * 47 * @param seed Seed to construct this generator for 48 */ 49 public SimplexNoiseGenerator(long seed) { 50 this(new Random(seed)); 51 } 52 53 /** 54 * Creates a seeded simplex noise generator with the given Random 55 * 56 * @param rand Random to construct with 57 */ 58 public SimplexNoiseGenerator(Random rand) { 59 super(rand); 60 offsetW = rand.nextDouble() * 256; 61 } 62 63 protected static double dot(int g[], double x, double y) { 64 return g[0] * x + g[1] * y; 65 } 66 67 protected static double dot(int g[], double x, double y, double z) { 68 return g[0] * x + g[1] * y + g[2] * z; 69 } 70 71 protected static double dot(int g[], double x, double y, double z, double w) { 72 return g[0] * x + g[1] * y + g[2] * z + g[3] * w; 73 } 74 75 /** 76 * Computes and returns the 1D unseeded simplex noise for the given coordinates in 1D space 77 * 78 * @param xin X coordinate 79 * @return Noise at given location, from range -1 to 1 80 */ 81 public static double getNoise(double xin) { 82 return instance.noise(xin); 83 } 84 85 /** 86 * Computes and returns the 2D unseeded simplex noise for the given coordinates in 2D space 87 * 88 * @param xin X coordinate 89 * @param yin Y coordinate 90 * @return Noise at given location, from range -1 to 1 91 */ 92 public static double getNoise(double xin, double yin) { 93 return instance.noise(xin, yin); 94 } 95 96 /** 97 * Computes and returns the 3D unseeded simplex noise for the given coordinates in 3D space 98 * 99 * @param xin X coordinate 100 * @param yin Y coordinate 101 * @param zin Z coordinate 102 * @return Noise at given location, from range -1 to 1 103 */ 104 public static double getNoise(double xin, double yin, double zin) { 105 return instance.noise(xin, yin, zin); 106 } 107 108 /** 109 * Computes and returns the 4D simplex noise for the given coordinates in 4D space 110 * 111 * @param x X coordinate 112 * @param y Y coordinate 113 * @param z Z coordinate 114 * @param w W coordinate 115 * @return Noise at given location, from range -1 to 1 116 */ 117 public static double getNoise(double x, double y, double z, double w) { 118 return instance.noise(x, y, z, w); 119 } 120 121 @Override 122 public double noise(double xin, double yin, double zin) { 123 xin += offsetX; 124 yin += offsetY; 125 zin += offsetZ; 126 127 double n0, n1, n2, n3; // Noise contributions from the four corners 128 129 // Skew the input space to determine which simplex cell we're in 130 double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D 131 int i = floor(xin + s); 132 int j = floor(yin + s); 133 int k = floor(zin + s); 134 double t = (i + j + k) * G3; 135 double X0 = i - t; // Unskew the cell origin back to (x,y,z) space 136 double Y0 = j - t; 137 double Z0 = k - t; 138 double x0 = xin - X0; // The x,y,z distances from the cell origin 139 double y0 = yin - Y0; 140 double z0 = zin - Z0; 141 142 // For the 3D case, the simplex shape is a slightly irregular tetrahedron. 143 144 // Determine which simplex we are in. 145 int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords 146 int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords 147 if (x0 >= y0) { 148 if (y0 >= z0) { 149 i1 = 1; 150 j1 = 0; 151 k1 = 0; 152 i2 = 1; 153 j2 = 1; 154 k2 = 0; 155 } // X Y Z order 156 else if (x0 >= z0) { 157 i1 = 1; 158 j1 = 0; 159 k1 = 0; 160 i2 = 1; 161 j2 = 0; 162 k2 = 1; 163 } // X Z Y order 164 else { 165 i1 = 0; 166 j1 = 0; 167 k1 = 1; 168 i2 = 1; 169 j2 = 0; 170 k2 = 1; 171 } // Z X Y order 172 } else { // x0<y0 173 if (y0 < z0) { 174 i1 = 0; 175 j1 = 0; 176 k1 = 1; 177 i2 = 0; 178 j2 = 1; 179 k2 = 1; 180 } // Z Y X order 181 else if (x0 < z0) { 182 i1 = 0; 183 j1 = 1; 184 k1 = 0; 185 i2 = 0; 186 j2 = 1; 187 k2 = 1; 188 } // Y Z X order 189 else { 190 i1 = 0; 191 j1 = 1; 192 k1 = 0; 193 i2 = 1; 194 j2 = 1; 195 k2 = 0; 196 } // Y X Z order 197 } 198 199 // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), 200 // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and 201 // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where 202 // c = 1/6. 203 double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords 204 double y1 = y0 - j1 + G3; 205 double z1 = z0 - k1 + G3; 206 double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords 207 double y2 = y0 - j2 + 2.0 * G3; 208 double z2 = z0 - k2 + 2.0 * G3; 209 double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords 210 double y3 = y0 - 1.0 + 3.0 * G3; 211 double z3 = z0 - 1.0 + 3.0 * G3; 212 213 // Work out the hashed gradient indices of the four simplex corners 214 int ii = i & 255; 215 int jj = j & 255; 216 int kk = k & 255; 217 int gi0 = perm[ii + perm[jj + perm[kk]]] % 12; 218 int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12; 219 int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12; 220 int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12; 221 222 // Calculate the contribution from the four corners 223 double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; 224 if (t0 < 0) { 225 n0 = 0.0; 226 } else { 227 t0 *= t0; 228 n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); 229 } 230 231 double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; 232 if (t1 < 0) { 233 n1 = 0.0; 234 } else { 235 t1 *= t1; 236 n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); 237 } 238 239 double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; 240 if (t2 < 0) { 241 n2 = 0.0; 242 } else { 243 t2 *= t2; 244 n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); 245 } 246 247 double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; 248 if (t3 < 0) { 249 n3 = 0.0; 250 } else { 251 t3 *= t3; 252 n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); 253 } 254 255 // Add contributions from each corner to get the final noise value. 256 // The result is scaled to stay just inside [-1,1] 257 return 32.0 * (n0 + n1 + n2 + n3); 258 } 259 260 @Override 261 public double noise(double xin, double yin) { 262 xin += offsetX; 263 yin += offsetY; 264 265 double n0, n1, n2; // Noise contributions from the three corners 266 267 // Skew the input space to determine which simplex cell we're in 268 double s = (xin + yin) * F2; // Hairy factor for 2D 269 int i = floor(xin + s); 270 int j = floor(yin + s); 271 double t = (i + j) * G2; 272 double X0 = i - t; // Unskew the cell origin back to (x,y) space 273 double Y0 = j - t; 274 double x0 = xin - X0; // The x,y distances from the cell origin 275 double y0 = yin - Y0; 276 277 // For the 2D case, the simplex shape is an equilateral triangle. 278 279 // Determine which simplex we are in. 280 int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords 281 if (x0 > y0) { 282 i1 = 1; 283 j1 = 0; 284 } // lower triangle, XY order: (0,0)->(1,0)->(1,1) 285 else { 286 i1 = 0; 287 j1 = 1; 288 } // upper triangle, YX order: (0,0)->(0,1)->(1,1) 289 290 // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and 291 // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where 292 // c = (3-sqrt(3))/6 293 294 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords 295 double y1 = y0 - j1 + G2; 296 double x2 = x0 + G22; // Offsets for last corner in (x,y) unskewed coords 297 double y2 = y0 + G22; 298 299 // Work out the hashed gradient indices of the three simplex corners 300 int ii = i & 255; 301 int jj = j & 255; 302 int gi0 = perm[ii + perm[jj]] % 12; 303 int gi1 = perm[ii + i1 + perm[jj + j1]] % 12; 304 int gi2 = perm[ii + 1 + perm[jj + 1]] % 12; 305 306 // Calculate the contribution from the three corners 307 double t0 = 0.5 - x0 * x0 - y0 * y0; 308 if (t0 < 0) { 309 n0 = 0.0; 310 } else { 311 t0 *= t0; 312 n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient 313 } 314 315 double t1 = 0.5 - x1 * x1 - y1 * y1; 316 if (t1 < 0) { 317 n1 = 0.0; 318 } else { 319 t1 *= t1; 320 n1 = t1 * t1 * dot(grad3[gi1], x1, y1); 321 } 322 323 double t2 = 0.5 - x2 * x2 - y2 * y2; 324 if (t2 < 0) { 325 n2 = 0.0; 326 } else { 327 t2 *= t2; 328 n2 = t2 * t2 * dot(grad3[gi2], x2, y2); 329 } 330 331 // Add contributions from each corner to get the final noise value. 332 // The result is scaled to return values in the interval [-1,1]. 333 return 70.0 * (n0 + n1 + n2); 334 } 335 336 /** 337 * Computes and returns the 4D simplex noise for the given coordinates in 4D space 338 * 339 * @param xin X coordinate 340 * @param yin Y coordinate 341 * @param zin Z coordinate 342 * @param win W coordinate 343 * @return Noise at given location, from range -1 to 1 344 */ 345 public double noise(double x, double y, double z, double w) { 346 x += offsetX; 347 y += offsetY; 348 z += offsetZ; 349 w += offsetW; 350 351 double n0, n1, n2, n3, n4; // Noise contributions from the five corners 352 353 // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in 354 double s = (x + y + z + w) * F4; // Factor for 4D skewing 355 int i = floor(x + s); 356 int j = floor(y + s); 357 int k = floor(z + s); 358 int l = floor(w + s); 359 360 double t = (i + j + k + l) * G4; // Factor for 4D unskewing 361 double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space 362 double Y0 = j - t; 363 double Z0 = k - t; 364 double W0 = l - t; 365 double x0 = x - X0; // The x,y,z,w distances from the cell origin 366 double y0 = y - Y0; 367 double z0 = z - Z0; 368 double w0 = w - W0; 369 370 // For the 4D case, the simplex is a 4D shape I won't even try to describe. 371 // To find out which of the 24 possible simplices we're in, we need to 372 // determine the magnitude ordering of x0, y0, z0 and w0. 373 // The method below is a good way of finding the ordering of x,y,z,w and 374 // then find the correct traversal order for the simplex we’re in. 375 // First, six pair-wise comparisons are performed between each possible pair 376 // of the four coordinates, and the results are used to add up binary bits 377 // for an integer index. 378 int c1 = (x0 > y0) ? 32 : 0; 379 int c2 = (x0 > z0) ? 16 : 0; 380 int c3 = (y0 > z0) ? 8 : 0; 381 int c4 = (x0 > w0) ? 4 : 0; 382 int c5 = (y0 > w0) ? 2 : 0; 383 int c6 = (z0 > w0) ? 1 : 0; 384 int c = c1 + c2 + c3 + c4 + c5 + c6; 385 int i1, j1, k1, l1; // The integer offsets for the second simplex corner 386 int i2, j2, k2, l2; // The integer offsets for the third simplex corner 387 int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner 388 389 // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. 390 // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w 391 // impossible. Only the 24 indices which have non-zero entries make any sense. 392 // We use a thresholding to set the coordinates in turn from the largest magnitude. 393 394 // The number 3 in the "simplex" array is at the position of the largest coordinate. 395 i1 = simplex[c][0] >= 3 ? 1 : 0; 396 j1 = simplex[c][1] >= 3 ? 1 : 0; 397 k1 = simplex[c][2] >= 3 ? 1 : 0; 398 l1 = simplex[c][3] >= 3 ? 1 : 0; 399 400 // The number 2 in the "simplex" array is at the second largest coordinate. 401 i2 = simplex[c][0] >= 2 ? 1 : 0; 402 j2 = simplex[c][1] >= 2 ? 1 : 0; 403 k2 = simplex[c][2] >= 2 ? 1 : 0; 404 l2 = simplex[c][3] >= 2 ? 1 : 0; 405 406 // The number 1 in the "simplex" array is at the second smallest coordinate. 407 i3 = simplex[c][0] >= 1 ? 1 : 0; 408 j3 = simplex[c][1] >= 1 ? 1 : 0; 409 k3 = simplex[c][2] >= 1 ? 1 : 0; 410 l3 = simplex[c][3] >= 1 ? 1 : 0; 411 412 // The fifth corner has all coordinate offsets = 1, so no need to look that up. 413 414 double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords 415 double y1 = y0 - j1 + G4; 416 double z1 = z0 - k1 + G4; 417 double w1 = w0 - l1 + G4; 418 419 double x2 = x0 - i2 + G42; // Offsets for third corner in (x,y,z,w) coords 420 double y2 = y0 - j2 + G42; 421 double z2 = z0 - k2 + G42; 422 double w2 = w0 - l2 + G42; 423 424 double x3 = x0 - i3 + G43; // Offsets for fourth corner in (x,y,z,w) coords 425 double y3 = y0 - j3 + G43; 426 double z3 = z0 - k3 + G43; 427 double w3 = w0 - l3 + G43; 428 429 double x4 = x0 + G44; // Offsets for last corner in (x,y,z,w) coords 430 double y4 = y0 + G44; 431 double z4 = z0 + G44; 432 double w4 = w0 + G44; 433 434 // Work out the hashed gradient indices of the five simplex corners 435 int ii = i & 255; 436 int jj = j & 255; 437 int kk = k & 255; 438 int ll = l & 255; 439 440 int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; 441 int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; 442 int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; 443 int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; 444 int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; 445 446 // Calculate the contribution from the five corners 447 double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; 448 if (t0 < 0) { 449 n0 = 0.0; 450 } else { 451 t0 *= t0; 452 n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); 453 } 454 455 double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; 456 if (t1 < 0) { 457 n1 = 0.0; 458 } else { 459 t1 *= t1; 460 n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); 461 } 462 463 double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; 464 if (t2 < 0) { 465 n2 = 0.0; 466 } else { 467 t2 *= t2; 468 n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); 469 } 470 471 double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; 472 if (t3 < 0) { 473 n3 = 0.0; 474 } else { 475 t3 *= t3; 476 n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); 477 } 478 479 double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; 480 if (t4 < 0) { 481 n4 = 0.0; 482 } else { 483 t4 *= t4; 484 n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); 485 } 486 487 // Sum up and scale the result to cover the range [-1,1] 488 return 27.0 * (n0 + n1 + n2 + n3 + n4); 489 } 490 491 /** 492 * Gets the singleton unseeded instance of this generator 493 * 494 * @return Singleton 495 */ 496 public static SimplexNoiseGenerator getInstance() { 497 return instance; 498 } 499}