/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2002 * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include #include namespace Gecode { namespace Support { /// Exchange elements according to order template forceinline void exchange(Type &a, Type &b, Less &less) { if (less(b,a)) std::swap(a,b); } /// Perform quicksort only for more elements int const QuickSortCutoff = 20; /// Static stack for quicksort template class QuickSortStack { private: /// Maximal stacksize quicksort ever needs static const int maxsize = sizeof(int) * CHAR_BIT; /// Top of stack Type** tos; /// Stack entries (terminated by nullptr entry) Type* stack[2*maxsize+1]; public: /// Initialize stack as empty QuickSortStack(void); /// Test whether stack is empty bool empty(void) const; /// Push two positions \a l and \a r void push(Type* l, Type* r); /// Pop two positions \a l and \a r void pop(Type*& l, Type*& r); }; template forceinline QuickSortStack::QuickSortStack(void) : tos(&stack[0]) { *(tos++) = nullptr; } template forceinline bool QuickSortStack::empty(void) const { return *(tos-1) == nullptr; } template forceinline void QuickSortStack::push(Type* l, Type* r) { *(tos++) = l; *(tos++) = r; } template forceinline void QuickSortStack::pop(Type*& l, Type*& r) { r = *(--tos); l = *(--tos); } /// Standard insertion sort template forceinline void insertion(Type* l, Type* r, Less &less) { for (Type* i = r; i > l; i--) exchange(*(i-1),*i,less); for (Type* i = l+2; i <= r; i++) { Type* j = i; Type v = *i; while (less(v,*(j-1))) { *j = *(j-1); j--; } *j = v; } } /// Standard partioning template forceinline Type* partition(Type* l, Type* r, Less &less) { Type* i = l-1; Type* j = r; Type v = *r; while (true) { while (less(*(++i),v)) {} while (less(v,*(--j))) if (j == l) break; if (i >= j) break; std::swap(*i,*j); } std::swap(*i,*r); return i; } /// Standard quick sort template inline void quicksort(Type* l, Type* r, Less &less) { QuickSortStack s; while (true) { std::swap(*(l+((r-l) >> 1)),*(r-1)); exchange(*l,*(r-1),less); exchange(*l,*r,less); exchange(*(r-1),*r,less); Type* i = partition(l+1,r-1,less); if (i-l > r-i) { if (r-i > QuickSortCutoff) { s.push(l,i-1); l=i+1; continue; } if (i-l > QuickSortCutoff) { r=i-1; continue; } } else { if (i-l > QuickSortCutoff) { s.push(i+1,r); r=i-1; continue; } if (r-i > QuickSortCutoff) { l=i+1; continue; } } if (s.empty()) break; s.pop(l,r); } } /// Comparison class for sorting using \a < template class Less { public: bool operator ()(const Type& lhs, const Type& rhs) { return lhs < rhs; } }; /** * \brief Insertion sort * * Sorts by insertion the \a n first elements of array \a x according * to the order \a l as instance of class \a Less. The class * \a Less must implement the single member function * \code bool operator ()(const Type&, const Type&) \endcode * for comparing elements. Note that the order must be strict, that * is: comparing an element with itself must return false. * * The algorithm is largely based on the following book: * Robert Sedgewick, Algorithms in C++, 3rd edition, 1998, Addison Wesley. * * \ingroup FuncSupport */ template forceinline void insertion(Type* x, int n, Less &l) { if (n < 2) return; assert(!l(x[0],x[0])); insertion(x,x+n-1,l); } /** * \brief Insertion sort * * Sorts by insertion the \a n first elements of array \a x according * to the order \a <. * * The algorithm is largely based on the following book: * Robert Sedgewick, Algorithms in C++, 3rd edition, 1998, Addison Wesley. * * \ingroup FuncSupport */ template forceinline void insertion(Type* x, int n) { if (n < 2) return; Less l; assert(!l(x[0],x[0])); insertion(x,x+n-1,l); } /** * \brief Quicksort * * Sorts with quicksort the \a n first elements of array \a x according * to the order \a l as instance of class \a Less. The class * \a Less must implement the single member function * \code bool operator ()(const Type&, const Type&) \endcode * for comparing elements. Note that the order must be strict, that * is: comparing an element with itself must return false. * * The algorithm is largely based on the following book: * Robert Sedgewick, Algorithms in C++, 3rd edition, 1998, Addison Wesley. * * \ingroup FuncSupport */ template forceinline void quicksort(Type* x, int n, Less &l) { if (n < 2) return; assert(!l(x[0],x[0])); if (n > QuickSortCutoff) quicksort(x,x+n-1,l); insertion(x,x+n-1,l); } /** * \brief Quicksort * * Sorts with quicksort the \a n first elements of array \a x according * to the order \a <. * * The algorithm is largely based on the following book: * Robert Sedgewick, Algorithms in C++, 3rd edition, 1998, Addison Wesley. * * \ingroup FuncSupport */ template forceinline void quicksort(Type* x, int n) { if (n < 2) return; Less l; assert(!l(x[0],x[0])); if (n > QuickSortCutoff) quicksort(x,x+n-1,l); insertion(x,x+n-1,l); } }} // STATISTICS: support-any