const math = @import("std").math; const zm = @import("zmath"); const hittable = @import("hittable.zig"); const Ray = @import("ray.zig"); const util = @import("util.zig"); pub const Material = union(enum) { lambertian: Lambertian, metal: Metal, dielectric: Dielectric, pub fn lambertian(albedo: zm.Vec) Material { return .{ .lambertian = .{ .albedo = albedo } }; } pub fn metal(albedo: zm.Vec, fuzz: f32) Material { return .{ .metal = .{ .albedo = albedo, .fuzz = if (fuzz < 1) fuzz else 1.0 } }; } pub fn dielectric(refraction_index: f32) Material { return .{ .dielectric = .{ .refraction_index = refraction_index } }; } pub fn scatter(self: *Material, r: *Ray, rec: *hittable.HitRecord, attenuation: *zm.Vec) ?Ray { return switch (self.*) { .lambertian => |*lambert| lambert.scatter(rec, attenuation), .metal => |*met| met.scatter(r, rec, attenuation), .dielectric => |*die| die.scatter(r, rec, attenuation), }; } }; pub const Lambertian = struct { albedo: zm.Vec, pub fn scatter(self: *Lambertian, rec: *hittable.HitRecord, attenuation: *zm.Vec) ?Ray { var scatter_dir = rec.normal + util.randomUnitVec(); if (util.nearZero(scatter_dir)) scatter_dir = rec.normal; attenuation.* = self.albedo; return Ray.init(rec.p, scatter_dir); } }; pub const Metal = struct { albedo: zm.Vec, /// fuzz < 1 fuzz: f32, pub fn scatter(self: *Metal, r: *Ray, rec: *hittable.HitRecord, attenuation: *zm.Vec) ?Ray { const reflected = util.reflect(r.dir, rec.normal); const scattered = Ray.init(rec.p, zm.normalize3(reflected) + zm.f32x4s(self.fuzz) * util.randomUnitVec()); attenuation.* = self.albedo; return if (zm.dot3(scattered.dir, rec.normal)[0] > 0) scattered else null; } }; pub const Dielectric = struct { refraction_index: f32, pub fn scatter(self: *Dielectric, r: *Ray, rec: *hittable.HitRecord, attenuation: *zm.Vec) ?Ray { attenuation.* = zm.f32x4s(1.0); const ri = if (rec.front_face) (1.0 / self.refraction_index) else self.refraction_index; const unit_direction = zm.normalize3(r.dir); const cos_theta = @min(zm.dot3(-unit_direction, rec.normal)[0], 1.0); const sin_theta = @sqrt(1.0 - cos_theta * cos_theta); const cannot_refract = ri * sin_theta > 1.0; const direction = blk: { if (cannot_refract or reflectance(cos_theta, ri) > util.randomF32()) { break :blk util.reflect(unit_direction, rec.normal); } else { break :blk util.refract(unit_direction, rec.normal, ri); } }; return Ray.init(rec.p, direction); } fn reflectance(cosine: f32, refraction_index: f32) f32 { var r0 = (1 - refraction_index) / (1 + refraction_index); r0 = r0 * r0; return r0 + (1 - r0) * math.pow(f32, 1 - cosine, 5); } };